Skip to main content

"Partial/Fuzzy Conditional random field in PyTorch."

Project description

pytorch-partial-crf

Partial/Fuzzy conditional random field in PyTorch.

How to use

Install

pip install pytorch-partial-crf

Use partial CRF

import torch
from pytorch_partial_crf import PartialCRF

# Create 
num_tags = 6
model = PartialCRF(num_tags)

batch_size, sequence_length = 3, 5
emissions = torch.randn(batch_size, sequence_length, num_tags)

# Set unknown tag to -1
tags = torch.LongTensor([
    [1, 2, 3, 3, 5],
    [-1, 3, 3, 2, -1],
    [-1, 0, -1, -1, 4],
])

# Computing log likelihood
model(emissions, tags)

License

MIT

References

The implementation is based on AllenNLP CRF module and pytorch-crf.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch-partial-crf-0.0.5.tar.gz (5.2 kB view details)

Uploaded Source

Built Distribution

pytorch_partial_crf-0.0.5-py3-none-any.whl (10.4 kB view details)

Uploaded Python 3

File details

Details for the file pytorch-partial-crf-0.0.5.tar.gz.

File metadata

  • Download URL: pytorch-partial-crf-0.0.5.tar.gz
  • Upload date:
  • Size: 5.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.1

File hashes

Hashes for pytorch-partial-crf-0.0.5.tar.gz
Algorithm Hash digest
SHA256 10b12ce397a087ec7859ee944aeb36ea6d1f8d9024579c52a6fbaf26ea875104
MD5 4377c6fe4a8c734a8604987f8f9f2505
BLAKE2b-256 66c680a782696897b33f31d4e20d2fca6a51c2fa9e7006a2fefd1f7a866075d7

See more details on using hashes here.

File details

Details for the file pytorch_partial_crf-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: pytorch_partial_crf-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 10.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.1

File hashes

Hashes for pytorch_partial_crf-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 2c62db68b2ef4b4183a4568d89034c7dc1f7b2f6cba189544c8363281ad028a4
MD5 2c8a633eed5271b778c64021e97f1499
BLAKE2b-256 937d0d9d6b8760e92763543524fb853eb63b71c89da9ee1b7a0cbe6df686ce45

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page