Skip to main content

"Partial/Fuzzy Conditional random field in PyTorch."

Project description

pytorch-partial-crf

Partial/Fuzzy conditional random field in PyTorch.

How to use

Install

pip install pytorch-partial-crf

Use partial CRF

import torch
from pytorch_partial_crf import PartialCRF

# Create 
num_tags = 6
model = PartialCRF(num_tags)

batch_size, sequence_length = 3, 5
emissions = torch.randn(batch_size, sequence_length, num_tags)

# Set unknown tag to -1
tags = torch.LongTensor([
    [1, 2, 3, 3, 5],
    [-1, 3, 3, 2, -1],
    [-1, 0, -1, -1, 4],
])

# Computing log likelihood
model(emissions, tags)

License

MIT

References

The implementation is based on AllenNLP CRF module and pytorch-crf.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch-partial-crf-0.0.6.tar.gz (5.2 kB view details)

Uploaded Source

Built Distribution

pytorch_partial_crf-0.0.6-py3-none-any.whl (10.4 kB view details)

Uploaded Python 3

File details

Details for the file pytorch-partial-crf-0.0.6.tar.gz.

File metadata

  • Download URL: pytorch-partial-crf-0.0.6.tar.gz
  • Upload date:
  • Size: 5.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.1

File hashes

Hashes for pytorch-partial-crf-0.0.6.tar.gz
Algorithm Hash digest
SHA256 d793622c37e26665b75c4b229d41972b6016bfbb99d3b03212a24bdcc0c1a785
MD5 06da25da84156dcaeda2fa3466838236
BLAKE2b-256 29f06c9ece7da5a1f8d3efd057634e9913564496d8b52950e8f69b5b62fa0c61

See more details on using hashes here.

File details

Details for the file pytorch_partial_crf-0.0.6-py3-none-any.whl.

File metadata

  • Download URL: pytorch_partial_crf-0.0.6-py3-none-any.whl
  • Upload date:
  • Size: 10.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.1

File hashes

Hashes for pytorch_partial_crf-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 d448c85699cc58df744efec3e57ff70e0ef185c00fcf31e64405199422e10a17
MD5 343f3838ceb2b0a7c0816504564aff34
BLAKE2b-256 7f6908d62fe1063a59fdae8c3599dd422d99696fbc7f2b721ba09b901900730b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page