Skip to main content

"Partial/Fuzzy Conditional random field in PyTorch."

Project description

pytorch-partial-crf

Partial/Fuzzy conditional random field in PyTorch.

How to use

Install

pip install pytorch-partial-crf

Use partial CRF

import torch
from pytorch_partial_crf import PartialCRF

# Create 
num_tags = 6
model = PartialCRF(num_tags)

batch_size, sequence_length = 3, 5
emissions = torch.randn(batch_size, sequence_length, num_tags)

# Set unknown tag to -1
tags = torch.LongTensor([
    [1, 2, 3, 3, 5],
    [-1, 3, 3, 2, -1],
    [-1, 0, -1, -1, 4],
])

# Computing log likelihood
model(emissions, tags)

License

MIT

References

The implementation is based on AllenNLP CRF module and pytorch-crf.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch-partial-crf-0.0.7.tar.gz (5.3 kB view details)

Uploaded Source

Built Distribution

pytorch_partial_crf-0.0.7-py3-none-any.whl (10.4 kB view details)

Uploaded Python 3

File details

Details for the file pytorch-partial-crf-0.0.7.tar.gz.

File metadata

  • Download URL: pytorch-partial-crf-0.0.7.tar.gz
  • Upload date:
  • Size: 5.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.1

File hashes

Hashes for pytorch-partial-crf-0.0.7.tar.gz
Algorithm Hash digest
SHA256 8b6b7f69fc6dd179f5865929d84ae43bee1ba8183b2f2491612d8e157b4a6526
MD5 828cb327208030f48b98385cbe2b72d7
BLAKE2b-256 afb51c6b7235005be0a1cbe909434d7c9511f3d16f0509df8a2913989c68d45b

See more details on using hashes here.

File details

Details for the file pytorch_partial_crf-0.0.7-py3-none-any.whl.

File metadata

  • Download URL: pytorch_partial_crf-0.0.7-py3-none-any.whl
  • Upload date:
  • Size: 10.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.1

File hashes

Hashes for pytorch_partial_crf-0.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 e2942c4ccae40a4a45da88836e7d346c8876e20589d14bdd8a0313767edd8d91
MD5 18b429a80fbf96918454d575d0e88eb2
BLAKE2b-256 e55aad4c11dcfe12f5c9abfec9864c68d5cf270c53929b8ac58f3ed45c42dd03

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page