Skip to main content

A toolkit for Relation Extraction and more...

Project description



Build CodeCoverage Docs

A toolkit for Relation & Event eXtraction (REx) and more...

This project has not been finished yet, so be careful when using it, or wait until the first release comes out.

This project is suffering from the second-system effect. I would like to cut some features to make this going smoothly.

Accelerate seems to be a very sweet wrapper for multi-GPU, TPU training, we highly recommend you to use such frameworks, instead of adding hard codes on your own.

⚙️Installation

Make sure you have installed all the dependencies below.

  • Python>=3.6
    • torch>=1.2.0 : project is developed with torch==1.7.1, should be compatable with >=1.2.0 versions
    • numpy>=1.19.0
    • scikit-learn>=0.21.3
    • click>=7.1.2
    • omegaconf>=2.0.6
    • loguru>=0.5.3
    • tqdm>=4.61.1
    • transformers>=4.8.2
$ git clone https://github.com/Spico197/REx.git
$ cd REx
$ pip install -e .

# or you can download and install from pypi, not recommend for now
$ pip install pytorch-rex -i https://pypi.org/simple

🚀QuickStart

Checkout the examples folder.

Name Model Dataset Task
SentRE-MCML PCNN IPRE Sentence-level Multi-class multi-label relation classification
BagRE PCNN+ONE NYT10 Bag-level relation classification (Multi-Instance Learning, MIL)
JointERE CasRel WebNLG Jointly entity relation extraction

✈️Abilities

Dataset

  • IPRE preprocess
  • NYT10

Tasks

  • Chinese sentence-level relation extraction
  • English bag-level relation extraction

Modules & Models

  • Piecewise CNN
  • PCNN + ONE
  • PCNN + ATT

✉️Update

  • v0.0.7: fix recursive import bug
  • v0.0.6: integrate omega conf loading into the inner task, add load_*_data option to data managers
  • v0.0.5: update ffn
  • v0.0.4: return detailed classification information in mc_prf1, support nested dict tensor movement
  • v0.0.3: fix packaging bug in setup.py
  • v0.0.2: add black formatter and pytest testing
  • v0.0.1: change LabelEncoder.to_binary_labels into convert_to_multi_hot or convert_to_one_hot

🔑LICENCE

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch-rex-0.0.7.tar.gz (25.8 kB view details)

Uploaded Source

Built Distribution

pytorch_rex-0.0.7-py3-none-any.whl (40.3 kB view details)

Uploaded Python 3

File details

Details for the file pytorch-rex-0.0.7.tar.gz.

File metadata

  • Download URL: pytorch-rex-0.0.7.tar.gz
  • Upload date:
  • Size: 25.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.10

File hashes

Hashes for pytorch-rex-0.0.7.tar.gz
Algorithm Hash digest
SHA256 935f5de8172d85cbc73c4887bd48a6da14163daba27c983aae379a5c2d002afa
MD5 e19ae742c90de08fbcbc70ed8dafe930
BLAKE2b-256 9246bb8da42dbb01e25626c0f51cae76f7e6333a1f4d3e59fdced23fc8c79b52

See more details on using hashes here.

File details

Details for the file pytorch_rex-0.0.7-py3-none-any.whl.

File metadata

  • Download URL: pytorch_rex-0.0.7-py3-none-any.whl
  • Upload date:
  • Size: 40.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.10

File hashes

Hashes for pytorch_rex-0.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 f054787dbbea648337bec09e6ee47ef79ecdb405d50e66eb7e3a3736ce7b5f70
MD5 9e82704056685ab019c7fddc653bc29d
BLAKE2b-256 93ec429c2e35e4d121480adac6c8b20da9f5e759b611495222cdb329ca6d9526

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page