Reinforcement Learning Library.
Project description
rllib
Reinforcement Learning Library.
Installation
pip install pytorch-rllib
Usage
Implemented agents:
- CrossEntropy
- Value / Policy Iteration
- Q-Learning
- SARSA
- DQN
- Rainbow
- REINFORCE
- A2C
import gym
import numpy as np
from rllib.qlearning import QLearningAgent
from rllib.trainer import Trainer
from rllib.utils import set_global_seed
# make environment
env = gym.make("Taxi-v3")
set_global_seed(seed=42, env=env)
n_actions = env.action_space.n
# make agent
agent = QLearningAgent(
alpha=0.5,
epsilon=0.25,
discount=0.99,
n_actions=n_actions,
)
# train
trainer = Trainer(env=env)
rewards = trainer.train(
agent=agent,
n_sessions=1000,
)
print(f"Mean reward: {np.mean(rewards[-10:])}") # Mean reward: 8.0
More examples you can find here.
Requirements
Python >= 3.7
Citation
If you use rllib in a scientific publication, we would appreciate references to the following BibTex entry:
@misc{dayyass2022rllib,
author = {El-Ayyass, Dani},
title = {Reinforcement Learning Library},
howpublished = {\url{https://github.com/dayyass/rllib}},
year = {2022}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pytorch-rllib-0.1.0.tar.gz
(3.4 kB
view details)
Built Distribution
File details
Details for the file pytorch-rllib-0.1.0.tar.gz
.
File metadata
- Download URL: pytorch-rllib-0.1.0.tar.gz
- Upload date:
- Size: 3.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.7.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5aeedd84cba5e5001808d5b233b35cd2c736121eab5d89800b5ec4fbc124ea20 |
|
MD5 | edbf11e7f94c57749f0d6d1d8f0210fc |
|
BLAKE2b-256 | a1f609c34becb462fbdf5edbaa82c4069e9c10f3a16707416a960205cee9eae7 |
File details
Details for the file pytorch_rllib-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: pytorch_rllib-0.1.0-py3-none-any.whl
- Upload date:
- Size: 5.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.7.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | df230928a0c404c65960e6090b849688eb4f6e12e1501d6dd3affb78b5dbe32c |
|
MD5 | 0bf17365dbcd45e6c036653b97f0a4b9 |
|
BLAKE2b-256 | 5853d0a0395c12283c0eb85d13141b705e03af17744021b9e50adb5f2632946e |