Skip to main content

Reinforcement Learning Library.

Project description

tests linter codecov

python 3.7 release (latest by date) license

pre-commit code style: black

pypi version pypi downloads

rllib

Reinforcement Learning Library

Installation

pip install pytorch-rllib

Usage

Implemented agents:

  • CrossEntropy
  • Value / Policy Iteration
  • Q-Learning
  • Expected Value SARSA
  • DQN
  • Rainbow
  • REINFORCE
  • A2C
import gym
import numpy as np

from rllib.qlearning import QLearningAgent
from rllib.trainer import Trainer
from rllib.utils import set_global_seed

# make environment
env = gym.make("Taxi-v3")
set_global_seed(seed=42, env=env)

n_actions = env.action_space.n

# make agent
agent = QLearningAgent(
    alpha=0.5,
    epsilon=0.25,
    discount=0.99,
    n_actions=n_actions,
)

# train
trainer = Trainer(env=env)
rewards = trainer.train(
    agent=agent,
    n_sessions=1000,
)

print(f"Mean reward: {np.mean(rewards[-10:])}")  # Mean reward: 8.0

More examples you can find here.

Requirements

Python >= 3.7

Citation

If you use rllib in a scientific publication, we would appreciate references to the following BibTex entry:

@misc{dayyass2022rllib,
    author       = {El-Ayyass, Dani},
    title        = {Reinforcement Learning Library},
    howpublished = {\url{https://github.com/dayyass/rllib}},
    year         = {2022}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch-rllib-0.1.1.tar.gz (3.9 kB view details)

Uploaded Source

Built Distribution

pytorch_rllib-0.1.1-py3-none-any.whl (5.7 kB view details)

Uploaded Python 3

File details

Details for the file pytorch-rllib-0.1.1.tar.gz.

File metadata

  • Download URL: pytorch-rllib-0.1.1.tar.gz
  • Upload date:
  • Size: 3.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.5

File hashes

Hashes for pytorch-rllib-0.1.1.tar.gz
Algorithm Hash digest
SHA256 184ab3c77afe424e1249b20bb6d6e6a75b2af61d8526f63bb9fb5eba165fd9fc
MD5 706c1cf97b1def3e53f592771dcbcbd6
BLAKE2b-256 4623693e8a37b1bee9c4581d229a89ee61fffa8540b446b717b5184222f56202

See more details on using hashes here.

File details

Details for the file pytorch_rllib-0.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for pytorch_rllib-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 c8116b4dffb44e80d49e4a49b4e27c83bfeaf30faf5876fd336bae4027e4671d
MD5 660ff46acdfcb85b156b8c40d880b76f
BLAKE2b-256 d19f67cabd3fc0e62ba4442faba498ccd16c2f6be3cf37495fb830a49a61752b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page