Skip to main content

Image segmentation models training of popular architectures.

Project description

pytorch_segmentation_models_trainer

Torch Pytorch Lightning Hydra Segmentation Models Python application Upload Python Package PyPI Publish Docker image maintainer DOI codecov Open in Visual Studio Code pre-commit.ci status

Framework based on Pytorch, Pytorch Lightning, segmentation_models.pytorch and hydra to train semantic segmentation models using yaml config files as follows:

model:
  _target_: segmentation_models_pytorch.Unet
  encoder_name: resnet34
  encoder_weights: imagenet
  in_channels: 3
  classes: 1

loss:
  _target_: segmentation_models_pytorch.utils.losses.DiceLoss

optimizer:
  _target_: torch.optim.AdamW
  lr: 0.001
  weight_decay: 1e-4

hyperparameters:
  batch_size: 1
  epochs: 2
  max_lr: 0.1

pl_trainer:
  max_epochs: ${hyperparameters.batch_size}
  gpus: 0

train_dataset:
  _target_: pytorch_segmentation_models_trainer.dataset_loader.dataset.SegmentationDataset
  input_csv_path: /path/to/input.csv
  data_loader:
    shuffle: True
    num_workers: 1
    pin_memory: True
    drop_last: True
    prefetch_factor: 1
  augmentation_list:
    - _target_: albumentations.HueSaturationValue
      always_apply: false
      hue_shift_limit: 0.2
      p: 0.5
    - _target_: albumentations.RandomBrightnessContrast
      brightness_limit: 0.2
      contrast_limit: 0.2
      p: 0.5
    - _target_: albumentations.RandomCrop
      always_apply: true
      height: 256
      width: 256
      p: 1.0
    - _target_: albumentations.Flip
      always_apply: true
    - _target_: albumentations.Normalize
      p: 1.0
    - _target_: albumentations.pytorch.transforms.ToTensorV2
      always_apply: true

val_dataset:
  _target_: pytorch_segmentation_models_trainer.dataset_loader.dataset.SegmentationDataset
  input_csv_path: /path/to/input.csv
  data_loader:
    shuffle: True
    num_workers: 1
    pin_memory: True
    drop_last: True
    prefetch_factor: 1
  augmentation_list:
    - _target_: albumentations.Resize
      always_apply: true
      height: 256
      width: 256
      p: 1.0
    - _target_: albumentations.Normalize
      p: 1.0
    - _target_: albumentations.pytorch.transforms.ToTensorV2
      always_apply: true

To train a model with configuration path /path/to/config/folder and name test.yaml:

pytorch-smt --config-dir /path/to/config/folder --config-name test +mode=train

The mode can be stored in configuration yaml as well. In this case, do not pass the +mode= argument. If the mode is stored in the yaml and you want to overwrite the value, do not use the + clause, just mode= .

This module suports hydra features such as configuration composition. For further information, please visit https://hydra.cc/docs/intro

Install

If you are not using docker and if you want to enable gpu acceleration, before installing this package, you should install pytorch_scatter as instructed in https://github.com/rusty1s/pytorch_scatter

After installing pytorch_scatter, just do

pip install pytorch_segmentation_models_trainer

We have a docker container in which all dependencies are installed and ready for gpu usage. You can pull the image from dockerhub:

docker pull phborba/pytorch_segmentation_models_trainer:latest

Citing:


@software{philipe_borba_2021_5115127,
  author       = {Philipe Borba},
  title        = {{phborba/pytorch\_segmentation\_models\_trainer:
                   Version 0.8.0}},
  month        = jul,
  year         = 2021,
  publisher    = {Zenodo},
  version      = {v0.8.0},
  doi          = {10.5281/zenodo.5115127},
  url          = {https://doi.org/10.5281/zenodo.5115127}
}


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file pytorch_segmentation_models_trainer-0.14.1.tar.gz.

File metadata

  • Download URL: pytorch_segmentation_models_trainer-0.14.1.tar.gz
  • Upload date:
  • Size: 112.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for pytorch_segmentation_models_trainer-0.14.1.tar.gz
Algorithm Hash digest
SHA256 86949081536772e98ea2a110e9d238b08bca1e8fe3307da88612e334d1ea3b6b
MD5 69e43e90ae4c774d27bccb06ac1524db
BLAKE2b-256 8d83e488db29ea21ac1d0cd7c7444b18b399c57c791099141c2e5274924fe151

See more details on using hashes here.

File details

Details for the file pytorch_segmentation_models_trainer-0.14.1-py3-none-any.whl.

File metadata

File hashes

Hashes for pytorch_segmentation_models_trainer-0.14.1-py3-none-any.whl
Algorithm Hash digest
SHA256 45beb334ba20e2ed978ed16ad4ef54f153e166592a820ec489ee0ec440075bbd
MD5 24925b357dbecc04d9725390fdf116eb
BLAKE2b-256 105926b7e03dbae344cef3de6c7284ba49481088e46b9624dadc9da3637bb2e7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page