Skip to main content

Image segmentation models training of popular architectures.

Project description

pytorch_segmentation_models_trainer

Torch Pytorch Lightning Hydra Segmentation Models Python application Upload Python Package PyPI Publish Docker image maintainer DOI

Framework based on Pytorch, Pytorch Lightning, segmentation_models.pytorch and hydra to train semantic segmentation models using yaml config files as follows:

model:
  _target_: segmentation_models_pytorch.Unet
  encoder_name: resnet34
  encoder_weights: imagenet
  in_channels: 3
  classes: 1

loss:
  _target_: segmentation_models_pytorch.utils.losses.DiceLoss

optimizer:
  _target_: torch.optim.AdamW
  lr: 0.001
  weight_decay: 1e-4

hyperparameters:
  batch_size: 1
  epochs: 2
  max_lr: 0.1

pl_trainer:
  max_epochs: ${hyperparameters.batch_size}
  gpus: 0

train_dataset:
  _target_: pytorch_segmentation_models_trainer.dataset_loader.dataset.SegmentationDataset
  input_csv_path: /path/to/input.csv
  data_loader:
    shuffle: True
    num_workers: 1
    pin_memory: True
    drop_last: True
    prefetch_factor: 1
  augmentation_list:
    - _target_: albumentations.HueSaturationValue
      always_apply: false
      hue_shift_limit: 0.2
      p: 0.5
    - _target_: albumentations.RandomBrightnessContrast
      brightness_limit: 0.2
      contrast_limit: 0.2
      p: 0.5
    - _target_: albumentations.RandomCrop
      always_apply: true
      height: 256
      width: 256
      p: 1.0
    - _target_: albumentations.Flip
      always_apply: true
    - _target_: albumentations.Normalize
      p: 1.0
    - _target_: albumentations.pytorch.transforms.ToTensorV2
      always_apply: true

val_dataset:
  _target_: pytorch_segmentation_models_trainer.dataset_loader.dataset.SegmentationDataset
  input_csv_path: /path/to/input.csv
  data_loader:
    shuffle: True
    num_workers: 1
    pin_memory: True
    drop_last: True
    prefetch_factor: 1
  augmentation_list:
    - _target_: albumentations.Resize
      always_apply: true
      height: 256
      width: 256
      p: 1.0
    - _target_: albumentations.Normalize
      p: 1.0
    - _target_: albumentations.pytorch.transforms.ToTensorV2
      always_apply: true

To train a model with configuration path /path/to/config/folder and name test.yaml:

pytorch-smt --config-dir /path/to/config/folder --config-name test +mode=train

The mode can be stored in configuration yaml as well. In this case, do not pass the +mode= argument. If the mode is stored in the yaml and you want to overwrite the value, do not use the + clause, just mode= .

This module suports hydra features such as configuration composition. For further information, please visit https://hydra.cc/docs/intro

Citing:


@software{philipe_borba_2021_4574256,
  author       = {Philipe Borba},
  title        = {{phborba/pytorch\_segmentation\_models\_trainer: 
                   Version 0.1.2}},
  month        = mar,
  year         = 2021,
  publisher    = {Zenodo},
  version      = {v0.1.2},
  doi          = {10.5281/zenodo.4574256},
  url          = {https://doi.org/10.5281/zenodo.4574256}
}


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file pytorch_segmentation_models_trainer-0.4.0.tar.gz.

File metadata

  • Download URL: pytorch_segmentation_models_trainer-0.4.0.tar.gz
  • Upload date:
  • Size: 62.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for pytorch_segmentation_models_trainer-0.4.0.tar.gz
Algorithm Hash digest
SHA256 1d153f34854575851f3da0785572eceb4a66b3f21bc9902b1d1438500f4de25f
MD5 2db32cd33305ea3be35f512700f19e55
BLAKE2b-256 172d61e0cd5ba9f20b96f03d67b2462e072037331a3255e076089d70ccd17680

See more details on using hashes here.

File details

Details for the file pytorch_segmentation_models_trainer-0.4.0-py3-none-any.whl.

File metadata

File hashes

Hashes for pytorch_segmentation_models_trainer-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 f8f4785195ebd7cc401b618ff19da0c3dd5644ac8597ace3afc17f4272dc5c4f
MD5 8e077ff9165890157c8705bf4d1ce6d6
BLAKE2b-256 97cc489f305628c8fb6470efcb8ec566a04838ef8d15f2265b3ba4bbf068191e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page