Skip to main content

Image segmentation models training of popular architectures.

Project description

pytorch_segmentation_models_trainer

Torch Pytorch Lightning Hydra Segmentation Models Python application Upload Python Package PyPI Publish Docker image maintainer DOI

Framework based on Pytorch, Pytorch Lightning, segmentation_models.pytorch and hydra to train semantic segmentation models using yaml config files as follows:

model:
  _target_: segmentation_models_pytorch.Unet
  encoder_name: resnet34
  encoder_weights: imagenet
  in_channels: 3
  classes: 1

loss:
  _target_: segmentation_models_pytorch.utils.losses.DiceLoss

optimizer:
  _target_: torch.optim.AdamW
  lr: 0.001
  weight_decay: 1e-4

hyperparameters:
  batch_size: 1
  epochs: 2
  max_lr: 0.1

pl_trainer:
  max_epochs: ${hyperparameters.batch_size}
  gpus: 0

train_dataset:
  _target_: pytorch_segmentation_models_trainer.dataset_loader.dataset.SegmentationDataset
  input_csv_path: /path/to/input.csv
  data_loader:
    shuffle: True
    num_workers: 1
    pin_memory: True
    drop_last: True
    prefetch_factor: 1
  augmentation_list:
    - _target_: albumentations.HueSaturationValue
      always_apply: false
      hue_shift_limit: 0.2
      p: 0.5
    - _target_: albumentations.RandomBrightnessContrast
      brightness_limit: 0.2
      contrast_limit: 0.2
      p: 0.5
    - _target_: albumentations.RandomCrop
      always_apply: true
      height: 256
      width: 256
      p: 1.0
    - _target_: albumentations.Flip
      always_apply: true
    - _target_: albumentations.Normalize
      p: 1.0
    - _target_: albumentations.pytorch.transforms.ToTensorV2
      always_apply: true

val_dataset:
  _target_: pytorch_segmentation_models_trainer.dataset_loader.dataset.SegmentationDataset
  input_csv_path: /path/to/input.csv
  data_loader:
    shuffle: True
    num_workers: 1
    pin_memory: True
    drop_last: True
    prefetch_factor: 1
  augmentation_list:
    - _target_: albumentations.Resize
      always_apply: true
      height: 256
      width: 256
      p: 1.0
    - _target_: albumentations.Normalize
      p: 1.0
    - _target_: albumentations.pytorch.transforms.ToTensorV2
      always_apply: true

To train a model with configuration path /path/to/config/folder and name test.yaml:

pytorch-smt --config-dir /path/to/config/folder --config-name test +mode=train

The mode can be stored in configuration yaml as well. In this case, do not pass the +mode= argument. If the mode is stored in the yaml and you want to overwrite the value, do not use the + clause, just mode= .

This module suports hydra features such as configuration composition. For further information, please visit https://hydra.cc/docs/intro

Citing:


@software{philipe_borba_2021_4574256,
  author       = {Philipe Borba},
  title        = {{phborba/pytorch\_segmentation\_models\_trainer: 
                   Version 0.1.2}},
  month        = mar,
  year         = 2021,
  publisher    = {Zenodo},
  version      = {v0.1.2},
  doi          = {10.5281/zenodo.4574256},
  url          = {https://doi.org/10.5281/zenodo.4574256}
}


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file pytorch_segmentation_models_trainer-0.5.0.tar.gz.

File metadata

  • Download URL: pytorch_segmentation_models_trainer-0.5.0.tar.gz
  • Upload date:
  • Size: 64.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for pytorch_segmentation_models_trainer-0.5.0.tar.gz
Algorithm Hash digest
SHA256 1977583241e7d3d02604028cbc96b5ba1c4697daf9f1f034c76f50d0fd948bec
MD5 75399ea4c9c70d1bae3aa743c61f4b3a
BLAKE2b-256 3aeaaf23f619ac8379e2cafa035e5a3b6c2442830bf3468204867b375cc231dd

See more details on using hashes here.

File details

Details for the file pytorch_segmentation_models_trainer-0.5.0-py3-none-any.whl.

File metadata

File hashes

Hashes for pytorch_segmentation_models_trainer-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 11bf8862dc21a4e41ce635b001919743e586213280079be8d32dde6c026c716f
MD5 56165ce2d6a186f2c042902bb520b998
BLAKE2b-256 cc6dd3c12fe80a31ce29cee4be9b461107cbd228d74ed19cae18ced3345902cd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page