Skip to main content

Image segmentation models training of popular architectures.

Project description

pytorch_segmentation_models_trainer

Torch Pytorch Lightning Hydra Segmentation Models Python application Upload Python Package PyPI Publish Docker image maintainer DOI codecov

Framework based on Pytorch, Pytorch Lightning, segmentation_models.pytorch and hydra to train semantic segmentation models using yaml config files as follows:

model:
  _target_: segmentation_models_pytorch.Unet
  encoder_name: resnet34
  encoder_weights: imagenet
  in_channels: 3
  classes: 1

loss:
  _target_: segmentation_models_pytorch.utils.losses.DiceLoss

optimizer:
  _target_: torch.optim.AdamW
  lr: 0.001
  weight_decay: 1e-4

hyperparameters:
  batch_size: 1
  epochs: 2
  max_lr: 0.1

pl_trainer:
  max_epochs: ${hyperparameters.batch_size}
  gpus: 0

train_dataset:
  _target_: pytorch_segmentation_models_trainer.dataset_loader.dataset.SegmentationDataset
  input_csv_path: /path/to/input.csv
  data_loader:
    shuffle: True
    num_workers: 1
    pin_memory: True
    drop_last: True
    prefetch_factor: 1
  augmentation_list:
    - _target_: albumentations.HueSaturationValue
      always_apply: false
      hue_shift_limit: 0.2
      p: 0.5
    - _target_: albumentations.RandomBrightnessContrast
      brightness_limit: 0.2
      contrast_limit: 0.2
      p: 0.5
    - _target_: albumentations.RandomCrop
      always_apply: true
      height: 256
      width: 256
      p: 1.0
    - _target_: albumentations.Flip
      always_apply: true
    - _target_: albumentations.Normalize
      p: 1.0
    - _target_: albumentations.pytorch.transforms.ToTensorV2
      always_apply: true

val_dataset:
  _target_: pytorch_segmentation_models_trainer.dataset_loader.dataset.SegmentationDataset
  input_csv_path: /path/to/input.csv
  data_loader:
    shuffle: True
    num_workers: 1
    pin_memory: True
    drop_last: True
    prefetch_factor: 1
  augmentation_list:
    - _target_: albumentations.Resize
      always_apply: true
      height: 256
      width: 256
      p: 1.0
    - _target_: albumentations.Normalize
      p: 1.0
    - _target_: albumentations.pytorch.transforms.ToTensorV2
      always_apply: true

To train a model with configuration path /path/to/config/folder and name test.yaml:

pytorch-smt --config-dir /path/to/config/folder --config-name test +mode=train

The mode can be stored in configuration yaml as well. In this case, do not pass the +mode= argument. If the mode is stored in the yaml and you want to overwrite the value, do not use the + clause, just mode= .

This module suports hydra features such as configuration composition. For further information, please visit https://hydra.cc/docs/intro

Citing:


@software{philipe_borba_2021_4574256,
  author       = {Philipe Borba},
  title        = {{phborba/pytorch\_segmentation\_models\_trainer: 
                   Version 0.1.2}},
  month        = mar,
  year         = 2021,
  publisher    = {Zenodo},
  version      = {v0.1.2},
  doi          = {10.5281/zenodo.4574256},
  url          = {https://doi.org/10.5281/zenodo.4574256}
}


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file pytorch_segmentation_models_trainer-0.5.1.tar.gz.

File metadata

  • Download URL: pytorch_segmentation_models_trainer-0.5.1.tar.gz
  • Upload date:
  • Size: 64.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for pytorch_segmentation_models_trainer-0.5.1.tar.gz
Algorithm Hash digest
SHA256 cab7eeb8ffba24851e9b80fd1be2b740d046f64896620d3ea834b293e146ebb8
MD5 fd36884869c5d44fb37aab3222cf8f13
BLAKE2b-256 76328cededccbabdfde6f76905206010c804a01edde67bd25650e64eca9e5727

See more details on using hashes here.

File details

Details for the file pytorch_segmentation_models_trainer-0.5.1-py3-none-any.whl.

File metadata

File hashes

Hashes for pytorch_segmentation_models_trainer-0.5.1-py3-none-any.whl
Algorithm Hash digest
SHA256 1899116be025c7130da79a591d51b703f73d09d373f6b9e8512f1193a9e9d30e
MD5 be001321332db9286fe2c91c881859c0
BLAKE2b-256 c8ee1df37c3decf6a1ef7da78fa0b976902a5c4fbb61b6d0ac855a4912159861

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page