Image segmentation models training of popular architectures.
Project description
pytorch_segmentation_models_trainer
Framework based on Pytorch, Pytorch Lightning, segmentation_models.pytorch and hydra to train semantic segmentation models using yaml config files as follows:
model:
_target_: segmentation_models_pytorch.Unet
encoder_name: resnet34
encoder_weights: imagenet
in_channels: 3
classes: 1
loss:
_target_: segmentation_models_pytorch.utils.losses.DiceLoss
optimizer:
_target_: torch.optim.AdamW
lr: 0.001
weight_decay: 1e-4
hyperparameters:
batch_size: 1
epochs: 2
max_lr: 0.1
pl_trainer:
max_epochs: ${hyperparameters.batch_size}
gpus: 0
train_dataset:
_target_: pytorch_segmentation_models_trainer.dataset_loader.dataset.SegmentationDataset
input_csv_path: /path/to/input.csv
data_loader:
shuffle: True
num_workers: 1
pin_memory: True
drop_last: True
prefetch_factor: 1
augmentation_list:
- _target_: albumentations.HueSaturationValue
always_apply: false
hue_shift_limit: 0.2
p: 0.5
- _target_: albumentations.RandomBrightnessContrast
brightness_limit: 0.2
contrast_limit: 0.2
p: 0.5
- _target_: albumentations.RandomCrop
always_apply: true
height: 256
width: 256
p: 1.0
- _target_: albumentations.Flip
always_apply: true
- _target_: albumentations.Normalize
p: 1.0
- _target_: albumentations.pytorch.transforms.ToTensorV2
always_apply: true
val_dataset:
_target_: pytorch_segmentation_models_trainer.dataset_loader.dataset.SegmentationDataset
input_csv_path: /path/to/input.csv
data_loader:
shuffle: True
num_workers: 1
pin_memory: True
drop_last: True
prefetch_factor: 1
augmentation_list:
- _target_: albumentations.Resize
always_apply: true
height: 256
width: 256
p: 1.0
- _target_: albumentations.Normalize
p: 1.0
- _target_: albumentations.pytorch.transforms.ToTensorV2
always_apply: true
To train a model with configuration path /path/to/config/folder
and name test.yaml
:
pytorch-smt --config-dir /path/to/config/folder --config-name test +mode=train
The mode can be stored in configuration yaml as well. In this case, do not pass the +mode= argument. If the mode is stored in the yaml and you want to overwrite the value, do not use the + clause, just mode= .
This module suports hydra features such as configuration composition. For further information, please visit https://hydra.cc/docs/intro
Install
If you are not using docker and if you want to enable gpu acceleration, before installing this package, you should install pytorch_scatter as instructed in https://github.com/rusty1s/pytorch_scatter
After installing pytorch_scatter, just do
pip install pytorch_segmentation_models_trainer
We have a docker container in which all dependencies are installed and ready for gpu usage. You can pull the image from dockerhub:
docker pull phborba/pytorch_segmentation_models_trainer:latest
Citing:
@software{philipe_borba_2021_4574256,
author = {Philipe Borba},
title = {{phborba/pytorch\_segmentation\_models\_trainer:
Version 0.1.2}},
month = mar,
year = 2021,
publisher = {Zenodo},
version = {v0.1.2},
doi = {10.5281/zenodo.4574256},
url = {https://doi.org/10.5281/zenodo.4574256}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pytorch_segmentation_models_trainer-0.7.0.tar.gz
.
File metadata
- Download URL: pytorch_segmentation_models_trainer-0.7.0.tar.gz
- Upload date:
- Size: 80.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | eea1a12d6285cc8f3fd8ae0971af3a79a91092909c7c78ddf384b077e7fdba9a |
|
MD5 | 2c8f3431fd655356e7668f98ab142b49 |
|
BLAKE2b-256 | b04f2c133577f978c9bfe7b43010148db2cef779164c98a80acea6a2eaa8a824 |
File details
Details for the file pytorch_segmentation_models_trainer-0.7.0-py3-none-any.whl
.
File metadata
- Download URL: pytorch_segmentation_models_trainer-0.7.0-py3-none-any.whl
- Upload date:
- Size: 114.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4dac33ca432e6c411b1a85d5f3360fb57043d591f2d1c00e34db583004fcf444 |
|
MD5 | 8e3315f009ccfb14cc606a1b5eb06f15 |
|
BLAKE2b-256 | bdc94ed32292f142ad46f843808facd00659b7d3de57c16c5a376b2fae1c7d5e |