Skip to main content

PyTorch implementation of the semi-markov dBCQ RL model

Project description

SMDP-BCQ

This repository contains an installable version of the SMDP-BCQ model.

Installation

The model has been tested using Python 3.9 and PyTorch 1.9. To install using Pip:

$ python3 -m pip install pytorch_smdbcq

Demo

$ python3 -m smdbcq --demo

See also

Our application of this model to warfarin dosing (under review) and experiments validating its estimation (CHIL 2022).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch-smdbcq-0.0.1.tar.gz (8.4 kB view details)

Uploaded Source

Built Distribution

pytorch_smdbcq-0.0.1-py3-none-any.whl (11.5 kB view details)

Uploaded Python 3

File details

Details for the file pytorch-smdbcq-0.0.1.tar.gz.

File metadata

  • Download URL: pytorch-smdbcq-0.0.1.tar.gz
  • Upload date:
  • Size: 8.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.5

File hashes

Hashes for pytorch-smdbcq-0.0.1.tar.gz
Algorithm Hash digest
SHA256 11706d2ab4652281a32a3e858e5fc67575eb768873b432447b6929c3fb1d480b
MD5 84549edb1ab4b8fc9c485f7d09228dcc
BLAKE2b-256 4f35bf53e7567bf838c8d79f44b8339835e997acb34eb97774c5ba69013b63cb

See more details on using hashes here.

File details

Details for the file pytorch_smdbcq-0.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for pytorch_smdbcq-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 1fef6acd9d61714cc245e1cc0ccc35aa0e7663216fb1746b619f56827fe4b9b0
MD5 2bbd2744df31c603d6d977dbab53d652
BLAKE2b-256 0b6efc54ebdb887b28bcc31576e14764971e884cf9128127e500ebeeaf59c703

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page