Skip to main content

Pytorch supporter

Project description

pytorch-supporter

https://pypi.org/project/pytorch-supporter

pip install pytorch-supporter

Supported layers

import pytorch_supporter

pytorch_supporter.layers.DictToParameters
pytorch_supporter.layers.DotProduct
pytorch_supporter.layers.GRULastHiddenState
pytorch_supporter.layers.HiddenStateResetGRU
pytorch_supporter.layers.HiddenStateResetLSTM
pytorch_supporter.layers.HiddenStateResetRNN
pytorch_supporter.layers.LazilyInitializedLinear
pytorch_supporter.layers.LSTMLastHiddenState
pytorch_supporter.layers.Reshape
pytorch_supporter.layers.RNNLastHiddenState
pytorch_supporter.layers.SelectFromArray

Supported utils

import pytorch_supporter

text = ''
pytorch_supporter.utils.clean_english(text)
pytorch_supporter.utils.clean_korean(text)

Simple time series regression

import pytorch_supporter

from sklearn.preprocessing import MinMaxScaler
transformer = MinMaxScaler()
transformer.fit(train_df[['Close']].to_numpy())
train_np_array = transformer.transform(validation_df[['Close']].to_numpy())
#window_length = sequence_length + 1
train_x, train_label = pytorch_supporter.utils.slice_time_series_data_from_np_array(train_np_array, x_column_indexes=[0], label_column_indexes=[0], sequence_length=7)
#print(train_x.shape) #(973, 7, 1)
#print(train_labels.shape) #(973, 1)
#print(validation_x.shape) #(238, 7, 1)
#print(validation_labels.shape) #(238, 1)

Multiple time series regression

import pytorch_supporter

from sklearn.preprocessing import MinMaxScaler
transformer = MinMaxScaler()
transformer.fit(train_df[['Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume']].to_numpy())
train_np_array = transformer.transform(validation_df[['Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume']].to_numpy())
#window_length = sequence_length + 1
train_x, train_label = pytorch_supporter.utils.slice_time_series_data_from_np_array(train_np_array, x_column_indexes=[0, 1, 2, 3, 4, 5], label_column_indexes=[3], sequence_length=7)
#print(train_x.shape) #(973, 7, 6)
#print(train_labels.shape) #(973, 1)
#print(validation_x.shape) #(238, 7, 6)
#print(validation_labels.shape) #(238, 1)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch-supporter-0.0.20.tar.gz (5.0 kB view details)

Uploaded Source

Built Distribution

pytorch_supporter-0.0.20-py3-none-any.whl (9.6 kB view details)

Uploaded Python 3

File details

Details for the file pytorch-supporter-0.0.20.tar.gz.

File metadata

  • Download URL: pytorch-supporter-0.0.20.tar.gz
  • Upload date:
  • Size: 5.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pytorch-supporter-0.0.20.tar.gz
Algorithm Hash digest
SHA256 6257da70b9f4a0ae3ddbfee7fa0eeed2c02a95c09fb8c03cb4329aab6ae14987
MD5 68721fe24102b2dce0eec3c42bb2617c
BLAKE2b-256 50c3d11d39ac2e5e8af44bd5ff31584e9c1aee0e0a43850d39da317cf4e6fabf

See more details on using hashes here.

File details

Details for the file pytorch_supporter-0.0.20-py3-none-any.whl.

File metadata

File hashes

Hashes for pytorch_supporter-0.0.20-py3-none-any.whl
Algorithm Hash digest
SHA256 4c1587638d60bc6b90a930538d1f161e3ac1772c4a50bcd17c7bcb6259e96736
MD5 15f7c6f021c85709dc7743c098449356
BLAKE2b-256 4be8d787bddf20d262456559735509475b7cab6d8f46e32135564dd24371f6b8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page