Skip to main content

Pytorch supporter

Project description

pytorch-supporter

Supported layers

import pytorch_supporter

pytorch_supporter.layers.DictToParameters
pytorch_supporter.layers.DotProduct
pytorch_supporter.layers.GRULastHiddenState
pytorch_supporter.layers.HiddenStateResetGRU
pytorch_supporter.layers.HiddenStateResetLSTM
pytorch_supporter.layers.HiddenStateResetRNN
pytorch_supporter.layers.LazilyInitializedLinear
pytorch_supporter.layers.LSTMLastHiddenState
pytorch_supporter.layers.Reshape
pytorch_supporter.layers.RNNLastHiddenState
pytorch_supporter.layers.SelectFromArray

Supported utils

import pytorch_supporter

text = ''
pytorch_supporter.utils.clean_english(text)
pytorch_supporter.utils.clean_korean(text)

Simple time series regression

import pytorch_supporter

from sklearn.preprocessing import MinMaxScaler
transformer = MinMaxScaler()
transformer.fit(train_df[['Close']].to_numpy())
train_np_array = transformer.transform(validation_df[['Close']].to_numpy())
#window_length = sequence_length + 1
train_x, train_label = pytorch_supporter.utils.slice_time_series_data_from_np_array(train_np_array, x_column_indexes=[0], label_column_indexes=[0], sequence_length=7)
#print(train_x.shape) #(973, 7, 1)
#print(train_labels.shape) #(973, 1)
#print(validation_x.shape) #(238, 7, 1)
#print(validation_labels.shape) #(238, 1)

Multiple time series regression

import pytorch_supporter

from sklearn.preprocessing import MinMaxScaler
transformer = MinMaxScaler()
transformer.fit(train_df[['Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume']].to_numpy())
train_np_array = transformer.transform(validation_df[['Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume']].to_numpy())
#window_length = sequence_length + 1
train_x, train_label = pytorch_supporter.utils.slice_time_series_data_from_np_array(train_np_array, x_column_indexes=[0, 1, 2, 3, 4, 5], label_column_indexes=[3], sequence_length=7)
#print(train_x.shape) #(973, 7, 6)
#print(train_labels.shape) #(973, 1)
#print(validation_x.shape) #(238, 7, 6)
#print(validation_labels.shape) #(238, 1)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch-supporter-0.0.14.tar.gz (4.9 kB view details)

Uploaded Source

Built Distribution

pytorch_supporter-0.0.14-py3-none-any.whl (9.5 kB view details)

Uploaded Python 3

File details

Details for the file pytorch-supporter-0.0.14.tar.gz.

File metadata

  • Download URL: pytorch-supporter-0.0.14.tar.gz
  • Upload date:
  • Size: 4.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pytorch-supporter-0.0.14.tar.gz
Algorithm Hash digest
SHA256 4ad331fc6954b58b001fd1a98712c5908c14ad3536a69f886e88396effd1a3f3
MD5 2e8f4c84086a1e3e94e0aff6a8f1b6ac
BLAKE2b-256 0fffe848e295281284918e83a58f9dd46f31ac436f49cfdf27338b1d44c36d24

See more details on using hashes here.

File details

Details for the file pytorch_supporter-0.0.14-py3-none-any.whl.

File metadata

File hashes

Hashes for pytorch_supporter-0.0.14-py3-none-any.whl
Algorithm Hash digest
SHA256 6b6873ab51b874d8134de76b2d1681474aca182dd0e007342a9023987d23dbad
MD5 2f1e06a529b0e4666f3f97a7861787f1
BLAKE2b-256 ecb44e8eef0d6136575ea1a13c54dd9fdd9aaab7db99a744d07c95a1313aeb8e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page