Skip to main content

Pytorch supporter

Project description

pytorch-supporter

https://pypi.org/project/pytorch-supporter

pip install pytorch-supporter

Supported layers

import pytorch_supporter

pytorch_supporter.layers.DictToParameters
pytorch_supporter.layers.DotProduct
pytorch_supporter.layers.GRULastHiddenState
pytorch_supporter.layers.HiddenStateResetGRU
pytorch_supporter.layers.HiddenStateResetLSTM
pytorch_supporter.layers.HiddenStateResetRNN
pytorch_supporter.layers.LazilyInitializedLinear
pytorch_supporter.layers.LSTMLastHiddenState
pytorch_supporter.layers.Reshape
pytorch_supporter.layers.RNNLastHiddenState
pytorch_supporter.layers.SelectFromArray

Supported utils

import pytorch_supporter

text = ''
pytorch_supporter.utils.clean_english(text)
pytorch_supporter.utils.clean_korean(text)

Simple time series regression

import pytorch_supporter

from sklearn.preprocessing import MinMaxScaler
transformer = MinMaxScaler()
transformer.fit(train_df[['Close']].to_numpy())
train_np_array = transformer.transform(validation_df[['Close']].to_numpy())
#window_length = sequence_length + 1
train_x, train_label = pytorch_supporter.utils.slice_time_series_data_from_np_array(train_np_array, x_column_indexes=[0], label_column_indexes=[0], sequence_length=7)
#print(train_x.shape) #(973, 7, 1)
#print(train_labels.shape) #(973, 1)
#print(validation_x.shape) #(238, 7, 1)
#print(validation_labels.shape) #(238, 1)

Multiple time series regression

import pytorch_supporter

from sklearn.preprocessing import MinMaxScaler
transformer = MinMaxScaler()
transformer.fit(train_df[['Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume']].to_numpy())
train_np_array = transformer.transform(validation_df[['Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume']].to_numpy())
#window_length = sequence_length + 1
train_x, train_label = pytorch_supporter.utils.slice_time_series_data_from_np_array(train_np_array, x_column_indexes=[0, 1, 2, 3, 4, 5], label_column_indexes=[3], sequence_length=7)
#print(train_x.shape) #(973, 7, 6)
#print(train_labels.shape) #(973, 1)
#print(validation_x.shape) #(238, 7, 6)
#print(validation_labels.shape) #(238, 1)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch-supporter-0.0.15.tar.gz (5.0 kB view details)

Uploaded Source

Built Distribution

pytorch_supporter-0.0.15-py3-none-any.whl (9.5 kB view details)

Uploaded Python 3

File details

Details for the file pytorch-supporter-0.0.15.tar.gz.

File metadata

  • Download URL: pytorch-supporter-0.0.15.tar.gz
  • Upload date:
  • Size: 5.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pytorch-supporter-0.0.15.tar.gz
Algorithm Hash digest
SHA256 cd4c46d341c36a00cebf3076b98e9caec1db4e98a6c207a350871626a0d7249c
MD5 14bb816242704c29ee28b09e4d61aad8
BLAKE2b-256 b1c0c9a738b318827c3d201e7e2f4406774413da08b2c21a0efcb51b68fddffe

See more details on using hashes here.

File details

Details for the file pytorch_supporter-0.0.15-py3-none-any.whl.

File metadata

File hashes

Hashes for pytorch_supporter-0.0.15-py3-none-any.whl
Algorithm Hash digest
SHA256 892cc6e8001826d30dec14e29d2b9f4b49061071d65809194b91056b4eb79c5b
MD5 82183587fa8373238231fa73034e5779
BLAKE2b-256 735225b0843adf58bc9c1c066f12974af53b72e1fb6f7e939c952ae59c2a8055

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page