Pytorch supporter
Project description
pytorch-supporter
https://pypi.org/project/pytorch-supporter
pip install pytorch-supporter
Supported layers
import pytorch_supporter pytorch_supporter.layers.DictToParameters pytorch_supporter.layers.DotProduct pytorch_supporter.layers.GRULastHiddenState pytorch_supporter.layers.HiddenStateResetGRU pytorch_supporter.layers.HiddenStateResetLSTM pytorch_supporter.layers.HiddenStateResetRNN pytorch_supporter.layers.LazilyInitializedLinear pytorch_supporter.layers.LSTMLastHiddenState pytorch_supporter.layers.Reshape pytorch_supporter.layers.RNNLastHiddenState pytorch_supporter.layers.SelectFromArray
Supported utils
import pytorch_supporter text = '' pytorch_supporter.utils.clean_english(text) pytorch_supporter.utils.clean_korean(text)
Simple time series regression
import pytorch_supporter from sklearn.preprocessing import MinMaxScaler transformer = MinMaxScaler() transformer.fit(train_df[['Close']].to_numpy()) train_np_array = transformer.transform(validation_df[['Close']].to_numpy()) #window_length = sequence_length + 1 train_x, train_label = pytorch_supporter.utils.slice_time_series_data_from_np_array(train_np_array, x_column_indexes=[0], label_column_indexes=[0], sequence_length=7) #print(train_x.shape) #(973, 7, 1) #print(train_labels.shape) #(973, 1) #print(validation_x.shape) #(238, 7, 1) #print(validation_labels.shape) #(238, 1)
Multiple time series regression
import pytorch_supporter from sklearn.preprocessing import MinMaxScaler transformer = MinMaxScaler() transformer.fit(train_df[['Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume']].to_numpy()) train_np_array = transformer.transform(validation_df[['Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume']].to_numpy()) #window_length = sequence_length + 1 train_x, train_label = pytorch_supporter.utils.slice_time_series_data_from_np_array(train_np_array, x_column_indexes=[0, 1, 2, 3, 4, 5], label_column_indexes=[3], sequence_length=7) #print(train_x.shape) #(973, 7, 6) #print(train_labels.shape) #(973, 1) #print(validation_x.shape) #(238, 7, 6) #print(validation_labels.shape) #(238, 1)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pytorch-supporter-0.0.16.tar.gz
.
File metadata
- Download URL: pytorch-supporter-0.0.16.tar.gz
- Upload date:
- Size: 5.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c87a605f0c21e39ae1471208dcae988276992392e778c87cc5abfe25706b603e |
|
MD5 | ef8ae1a4920d6bfdc282aa2a044289d4 |
|
BLAKE2b-256 | 3a011a4dfbf2f3b58c8b8c8636189052fb857579f2ae4546caa51d14cbbf2aa6 |
File details
Details for the file pytorch_supporter-0.0.16-py3-none-any.whl
.
File metadata
- Download URL: pytorch_supporter-0.0.16-py3-none-any.whl
- Upload date:
- Size: 9.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c4464500b3d236bfae188c8e3f0082c532ac6eaaac5b500228d18ec7f3de306f |
|
MD5 | 63470252a4629703658b1932d67ebbe5 |
|
BLAKE2b-256 | 13ab1a1fd2908b2815a2af11a9861025659e4ceab22bf9c5c3b70cb32280c2ed |