Skip to main content

Pytorch supporter

Project description

pytorch-supporter

https://pypi.org/project/pytorch-supporter

pip install pytorch-supporter

Supported layers

import pytorch_supporter

pytorch_supporter.layers.DictToParameters
pytorch_supporter.layers.DotProduct
pytorch_supporter.layers.GRULastHiddenState
pytorch_supporter.layers.HiddenStateResetGRU
pytorch_supporter.layers.HiddenStateResetLSTM
pytorch_supporter.layers.HiddenStateResetRNN
pytorch_supporter.layers.LazilyInitializedLinear
pytorch_supporter.layers.LSTMLastHiddenState
pytorch_supporter.layers.Reshape
pytorch_supporter.layers.RNNLastHiddenState
pytorch_supporter.layers.SelectFromArray

Supported utils

import pytorch_supporter

text = ''
pytorch_supporter.utils.clean_english(text)
pytorch_supporter.utils.clean_korean(text)

Simple time series regression

import pytorch_supporter

from sklearn.preprocessing import MinMaxScaler
transformer = MinMaxScaler()
transformer.fit(train_df[['Close']].to_numpy())
train_np_array = transformer.transform(validation_df[['Close']].to_numpy())
#window_length = sequence_length + 1
train_x, train_label = pytorch_supporter.utils.slice_time_series_data_from_np_array(train_np_array, x_column_indexes=[0], label_column_indexes=[0], sequence_length=7)
#print(train_x.shape) #(973, 7, 1)
#print(train_labels.shape) #(973, 1)
#print(validation_x.shape) #(238, 7, 1)
#print(validation_labels.shape) #(238, 1)

Multiple time series regression

import pytorch_supporter

from sklearn.preprocessing import MinMaxScaler
transformer = MinMaxScaler()
transformer.fit(train_df[['Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume']].to_numpy())
train_np_array = transformer.transform(validation_df[['Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume']].to_numpy())
#window_length = sequence_length + 1
train_x, train_label = pytorch_supporter.utils.slice_time_series_data_from_np_array(train_np_array, x_column_indexes=[0, 1, 2, 3, 4, 5], label_column_indexes=[3], sequence_length=7)
#print(train_x.shape) #(973, 7, 6)
#print(train_labels.shape) #(973, 1)
#print(validation_x.shape) #(238, 7, 6)
#print(validation_labels.shape) #(238, 1)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch-supporter-0.0.16.tar.gz (5.0 kB view details)

Uploaded Source

Built Distribution

pytorch_supporter-0.0.16-py3-none-any.whl (9.5 kB view details)

Uploaded Python 3

File details

Details for the file pytorch-supporter-0.0.16.tar.gz.

File metadata

  • Download URL: pytorch-supporter-0.0.16.tar.gz
  • Upload date:
  • Size: 5.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pytorch-supporter-0.0.16.tar.gz
Algorithm Hash digest
SHA256 c87a605f0c21e39ae1471208dcae988276992392e778c87cc5abfe25706b603e
MD5 ef8ae1a4920d6bfdc282aa2a044289d4
BLAKE2b-256 3a011a4dfbf2f3b58c8b8c8636189052fb857579f2ae4546caa51d14cbbf2aa6

See more details on using hashes here.

File details

Details for the file pytorch_supporter-0.0.16-py3-none-any.whl.

File metadata

File hashes

Hashes for pytorch_supporter-0.0.16-py3-none-any.whl
Algorithm Hash digest
SHA256 c4464500b3d236bfae188c8e3f0082c532ac6eaaac5b500228d18ec7f3de306f
MD5 63470252a4629703658b1932d67ebbe5
BLAKE2b-256 13ab1a1fd2908b2815a2af11a9861025659e4ceab22bf9c5c3b70cb32280c2ed

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page