Skip to main content

Pytorch supporter

Project description

pytorch-supporter

https://pypi.org/project/pytorch-supporter

pip install pytorch-supporter

Supported layers

import pytorch_supporter

pytorch_supporter.layers.DictToParameters
pytorch_supporter.layers.DotProduct
pytorch_supporter.layers.GRULastHiddenState
pytorch_supporter.layers.HiddenStateResetGRU
pytorch_supporter.layers.HiddenStateResetLSTM
pytorch_supporter.layers.HiddenStateResetRNN
pytorch_supporter.layers.LazilyInitializedLinear
pytorch_supporter.layers.LSTMLastHiddenState
pytorch_supporter.layers.Reshape
pytorch_supporter.layers.RNNLastHiddenState
pytorch_supporter.layers.SelectFromArray

Supported utils

import pytorch_supporter

text = ''
pytorch_supporter.utils.clean_english(text)
pytorch_supporter.utils.clean_korean(text)

Simple time series regression

import pytorch_supporter

from sklearn.preprocessing import MinMaxScaler
transformer = MinMaxScaler()
transformer.fit(train_df[['Close']].to_numpy())
train_np_array = transformer.transform(validation_df[['Close']].to_numpy())
#window_length = sequence_length + 1
train_x, train_label = pytorch_supporter.utils.slice_time_series_data_from_np_array(train_np_array, x_column_indexes=[0], label_column_indexes=[0], sequence_length=7)
#print(train_x.shape) #(973, 7, 1)
#print(train_labels.shape) #(973, 1)
#print(validation_x.shape) #(238, 7, 1)
#print(validation_labels.shape) #(238, 1)

Multiple time series regression

import pytorch_supporter

from sklearn.preprocessing import MinMaxScaler
transformer = MinMaxScaler()
transformer.fit(train_df[['Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume']].to_numpy())
train_np_array = transformer.transform(validation_df[['Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume']].to_numpy())
#window_length = sequence_length + 1
train_x, train_label = pytorch_supporter.utils.slice_time_series_data_from_np_array(train_np_array, x_column_indexes=[0, 1, 2, 3, 4, 5], label_column_indexes=[3], sequence_length=7)
#print(train_x.shape) #(973, 7, 6)
#print(train_labels.shape) #(973, 1)
#print(validation_x.shape) #(238, 7, 6)
#print(validation_labels.shape) #(238, 1)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch-supporter-0.0.17.tar.gz (5.0 kB view details)

Uploaded Source

Built Distribution

pytorch_supporter-0.0.17-py3-none-any.whl (9.5 kB view details)

Uploaded Python 3

File details

Details for the file pytorch-supporter-0.0.17.tar.gz.

File metadata

  • Download URL: pytorch-supporter-0.0.17.tar.gz
  • Upload date:
  • Size: 5.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pytorch-supporter-0.0.17.tar.gz
Algorithm Hash digest
SHA256 e1b282671a3c70440edd68e0631d6dae32000edeb36ab41bbc576f43b3ca4c37
MD5 021a306f1ffdde4ee978cc2b0299fa3b
BLAKE2b-256 c27994026be2b48248d556d5e06873679363975c91a3f339d6c66ebeae55a89c

See more details on using hashes here.

File details

Details for the file pytorch_supporter-0.0.17-py3-none-any.whl.

File metadata

File hashes

Hashes for pytorch_supporter-0.0.17-py3-none-any.whl
Algorithm Hash digest
SHA256 5a99acc3654505465488c8fe49630c7efea77271b55262397fcd3c7c08aeaf80
MD5 4445c7be74a82b48e5ddf121473b8649
BLAKE2b-256 88d5c946cd778b7ab88d122a8e231d48c2f2ba0d55df7c0b30cc8f761f753676

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page