Skip to main content

No project description provided

Project description

pytorch-tabr

Overview

pytorch-tabr is a Python package that provides a PyTorch wrapper implementation of TabR, a deep learning model for tabular data. The original implementation can be found here: TabR: Unlocking the Power of Retrieval-Augmented Tabular Deep Learning This package allows for easy and efficient modeling of both classification and regression tasks using tabular data. It includes support for various kinds of embeddings and customizations to cater to different types of tabular datasets.

Features

  • TabR Model: Core deep learning model for tabular data.
  • Classification and Regression: Support for both classification (TabRClassifier) and regression (TabRRegressor) tasks.
  • Custom Embeddings: Supports categorical, numerical, and other types of embeddings.
  • Efficient Handling of Data: Efficient data loaders and utilities for handling tabular data.

Installation

pip install pytorch-tabr

Usage

Basic example

from pytorch_tabr import TabRClassifier, TabRRegressor

# For a classification task
classifier = TabRClassifier(cat_indices=[0, 2], cat_cardinalities=[3, 5])
# Training and prediction...

# For a regression task
regressor = TabRRegressor(cat_indices=[1, 3], cat_cardinalities=[4, 2])
# Training and prediction...

API Overview

  • TabRClassifier: Model for classification tasks.
  • TabRRegressor: Model for regression tasks.
  • TabR: Base module implementing the TabR architecture.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch_tabr-0.1.0.tar.gz (25.0 kB view details)

Uploaded Source

Built Distribution

pytorch_tabr-0.1.0-py3-none-any.whl (27.5 kB view details)

Uploaded Python 3

File details

Details for the file pytorch_tabr-0.1.0.tar.gz.

File metadata

  • Download URL: pytorch_tabr-0.1.0.tar.gz
  • Upload date:
  • Size: 25.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.1 CPython/3.8.5 Linux/5.4.72-microsoft-standard-WSL2

File hashes

Hashes for pytorch_tabr-0.1.0.tar.gz
Algorithm Hash digest
SHA256 a2ddb381395ddf1f9da583c4d268e650c540d0046c4f3bd99708d71ae28c936a
MD5 8c9ff72f177f5c3c2fe61ecf2739ae2d
BLAKE2b-256 de0205300db8d3c268cb0543d2a520fca1aa101cec9afe01c018abe4aefd477d

See more details on using hashes here.

File details

Details for the file pytorch_tabr-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: pytorch_tabr-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 27.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.1 CPython/3.8.5 Linux/5.4.72-microsoft-standard-WSL2

File hashes

Hashes for pytorch_tabr-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2cca4a6684526ae9775e710d8da9d49c6b5d0f2b10e715e0fc0a07d1b97f82ae
MD5 c50f2a16a16bdf0e7808f10f2bf3faec
BLAKE2b-256 b22341d768c3ad5a426661f4c864babe5c0559f7ea86459c925a2c67ac3cea63

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page