Convert deep learning models
Project description
Install
pip install pytorch_to_tflite
How to use
Pytorch to Onnx
# !pip install -e ../
from pytorch_to_tflite.pytorch_to_tflite import *
import torch
import yaml
import os
import mmcv
from nanodet.model.arch import build_model
PATH_TO_CONFIG = '/gitprojects/nano-det-parkingline/config/nanodet-g.yml'
cfg = yaml.safe_load(open(PATH_TO_CONFIG))
cfg = mmcv.Config(cfg)
model = build_model(cfg.model)
img = torch.randn(1,3,416,416)
out = model(img)
!mkdir -p cache/
onnx_out_path = 'cache/out.onnx'
torch.onnx.export(model, img, onnx_out_path)
Finish initialize Lite GFL Head.
/root/miniconda3/envs/pytorch-to-tflite/lib/python3.9/site-packages/torch/nn/functional.py:718: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)
return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)
/root/miniconda3/envs/pytorch-to-tflite/lib/python3.9/site-packages/torch/nn/functional.py:3609: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details.
warnings.warn(
/root/miniconda3/envs/pytorch-to-tflite/lib/python3.9/site-packages/torch/nn/functional.py:3657: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and now uses scale_factor directly, instead of relying on the computed output size. If you wish to restore the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details.
warnings.warn(
ONNX to Tensorflow
onnx_path = onnx_out_path
tf_path = onnx_path + '.tf'
onnx_to_tf(onnx_path=onnx_path, tf_path=tf_path)
assert os.path.exists(tf_path)
Tensorflow to tflite
tflite_path = tf_path+'.tflite'
tf_to_tf_lite(tf_path, tflite_path)
assert os.path.exists(tflite_path)
tflite_path
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pytorch_to_tflite-0.0.4.tar.gz
(11.0 kB
view details)
Built Distribution
File details
Details for the file pytorch_to_tflite-0.0.4.tar.gz
.
File metadata
- Download URL: pytorch_to_tflite-0.0.4.tar.gz
- Upload date:
- Size: 11.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a811be80e81a1a896c76804182ec65b8b21b983e843eb9400e2867cdad84d7c6 |
|
MD5 | befe551e76ccdfdf49bd8b3730acfa9f |
|
BLAKE2b-256 | 84f558d91ace8894a529b341cf158dbc6e0135d2e3ddfb6e1a9b82ede5334f72 |
File details
Details for the file pytorch_to_tflite-0.0.4-py3-none-any.whl
.
File metadata
- Download URL: pytorch_to_tflite-0.0.4-py3-none-any.whl
- Upload date:
- Size: 9.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 40490e655dd896343a3d5f8ef449a15137d9d1bddfe4854c018460d29930ce67 |
|
MD5 | ac4656f9cd7fe07fc707f0136e45c15d |
|
BLAKE2b-256 | b230cbfaf92015eb838dcb1791b3e08a6f1b7ad41b88d828e087b25d73800a79 |