Skip to main content

A neural network visualization engine, built for pytorch

Project description

Neural Network Visualization Tool

This tool is designed to provide a dynamic visualization of neural network training. It integrates with a PyTorch model's forward pass as a decorator, allowing you to visualize how neural network training occurs.

Features:

  • Supported Loss Functions:

    1. NLLLoss
    2. CrossEntropyLoss
  • Layer Compatibility:

    • Currently supports fully connected (dense) layers.

Interactive Visualization:

  • View the gradient, bias, and weight histories for both nodes and lines.
  • Click on any node or line to inspect its parameters.

Installation

pip install pytorch_visualizer

How the API is used

Below is an example showing how the API can be used:

from python_visualizer.nn_visualizer import visualize
class SimpleNN(nn.Module):
    def __init__(self):
        super(SimpleNN, self).__init__()
        self.fc1 = nn.Linear(2, 5) 
        self.fc2 = nn.Linear(5, 3)
        self.relu = nn.ReLU()
    
    @visualize(epochs=5, labels=None, loss_func=None, backward=False)
    def forward(self, x):
        x = self.fc1(x) 
        x = self.relu(x)
        x = self.fc2(x) 
        return x

check demo.ipynb for a full implementation with a training loop

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch_visualizer-0.1.1.tar.gz (40.3 kB view details)

Uploaded Source

Built Distribution

pytorch_visualizer-0.1.1-py3-none-any.whl (47.9 kB view details)

Uploaded Python 3

File details

Details for the file pytorch_visualizer-0.1.1.tar.gz.

File metadata

  • Download URL: pytorch_visualizer-0.1.1.tar.gz
  • Upload date:
  • Size: 40.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.1

File hashes

Hashes for pytorch_visualizer-0.1.1.tar.gz
Algorithm Hash digest
SHA256 ee77f580005d3928d4196d70041b6c6020af97f4ba87d12c2c13f78cf70b69ff
MD5 855e32d985e188d8dc044197816cd996
BLAKE2b-256 af905d35ff5cdcfec27d890ed386d2fa19eb5b27a6aa9f4e9f7c87b9a1afb5a6

See more details on using hashes here.

File details

Details for the file pytorch_visualizer-0.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for pytorch_visualizer-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 b2a6336cacc53f0fe25c916967c30c56903403db75d68f660983d01754ebef9b
MD5 9a3e7536ca8aa78cd887162707d01cc5
BLAKE2b-256 429181def1e7422a648a01dcacb52dadd9dd001a3bc516ad61bf1f5824c75108

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page