Say hello
Project description
Download to develop
pip install -e .[dev]
Examples
import torch
from pytorchLosses import LabelSmoothingCrossEntropy,GamblersLoss,SCELoss,TruncatedLoss
a = torch.rand(4, 5)
b = torch.randint(0, 2, (4,))
loss_fun = LabelSmoothingCrossEntropy()
print(loss_fun(a,b))
print(GamblersLoss(a,b))
loss_fun = SCELoss(alpha=1.0,beta=1.0,num_classes=5).cuda()
print(loss_fun(a.cuda(),b.cuda()))
# Yet to test
loss_fun = TruncatedLoss(q=0.7, k=0.5, trainset_size=10000).cuda()
print(loss_fun(a.cuda(),b.cuda(),indexes=1))
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pytorchLosses-0.0.2.tar.gz
(15.0 kB
view details)
Built Distribution
File details
Details for the file pytorchLosses-0.0.2.tar.gz
.
File metadata
- Download URL: pytorchLosses-0.0.2.tar.gz
- Upload date:
- Size: 15.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 059e34820e79a3e22b5236da918653e7e9b9baa22f0bc6838a708a0716ecd291 |
|
MD5 | 73bdc3b518419e59bd6549efb5751739 |
|
BLAKE2b-256 | aeb95b9acad9491ada63433a7a86d7bd5124546708b1f148071dd26007a5b00e |
File details
Details for the file pytorchLosses-0.0.2-py3-none-any.whl
.
File metadata
- Download URL: pytorchLosses-0.0.2-py3-none-any.whl
- Upload date:
- Size: 14.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 28176cdd230295ba68235a224113481049d4ca7d380d1421e2233c4028e697be |
|
MD5 | 81850e0f3e8510ec124ac1c45548aa3e |
|
BLAKE2b-256 | b98592fb2dea00eb4c97004e9ce7cfeb1bf699ed1d46e35efa906a53aad430a0 |