pytorch-optimizer
Project description
pytorch-optimizer
Bunch of optimizer implementations in PyTorch with clean-code, strict types. Inspired by pytorch-optimizer.
Usage
Supported Optimizers
Optimizer | Description | Official Code | Paper |
---|---|---|---|
AdamP | Slowing Down the Slowdown for Momentum Optimizers on Scale-invariant Weights | github | https://arxiv.org/abs/2006.08217 |
Adaptive Gradient Clipping (AGC) | High-Performance Large-Scale Image Recognition Without Normalization | github | https://arxiv.org/abs/2102.06171 |
Chebyshev LR Schedules | Acceleration via Fractal Learning Rate Schedules | https://arxiv.org/abs/2103.01338v1 | |
Gradient Centralization (GC) | A New Optimization Technique for Deep Neural Networks | github | https://arxiv.org/abs/2004.01461 |
Lookahead | k steps forward, 1 step back | github | https://arxiv.org/abs/1907.08610v2 |
RAdam | On the Variance of the Adaptive Learning Rate and Beyond | github | https://arxiv.org/abs/1908.03265 |
Ranger | a synergistic optimizer combining RAdam and LookAhead, and now GC in one optimizer | github | |
Ranger21 | integrating the latest deep learning components into a single optimizer | github |
Citations
AdamP
@inproceedings{heo2021adamp,
title={AdamP: Slowing Down the Slowdown for Momentum Optimizers on Scale-invariant Weights},
author={Heo, Byeongho and Chun, Sanghyuk and Oh, Seong Joon and Han, Dongyoon and Yun, Sangdoo and Kim, Gyuwan and Uh, Youngjung and Ha, Jung-Woo},
year={2021},
booktitle={International Conference on Learning Representations (ICLR)},
}
Adaptive Gradient Clipping (AGC)
@article{brock2021high,
author={Andrew Brock and Soham De and Samuel L. Smith and Karen Simonyan},
title={High-Performance Large-Scale Image Recognition Without Normalization},
journal={arXiv preprint arXiv:2102.06171},
year={2021}
}
Chebyshev LR Schedules
@article{agarwal2021acceleration,
title={Acceleration via Fractal Learning Rate Schedules},
author={Agarwal, Naman and Goel, Surbhi and Zhang, Cyril},
journal={arXiv preprint arXiv:2103.01338},
year={2021}
}
Gradient Centralization (GC)
@inproceedings{yong2020gradient,
title={Gradient centralization: A new optimization technique for deep neural networks},
author={Yong, Hongwei and Huang, Jianqiang and Hua, Xiansheng and Zhang, Lei},
booktitle={European Conference on Computer Vision},
pages={635--652},
year={2020},
organization={Springer}
}
Lookahead
@article{zhang2019lookahead,
title={Lookahead optimizer: k steps forward, 1 step back},
author={Zhang, Michael R and Lucas, James and Hinton, Geoffrey and Ba, Jimmy},
journal={arXiv preprint arXiv:1907.08610},
year={2019}
}
RAdam
@inproceedings{liu2019radam,
author = {Liu, Liyuan and Jiang, Haoming and He, Pengcheng and Chen, Weizhu and Liu, Xiaodong and Gao, Jianfeng and Han, Jiawei},
booktitle = {Proceedings of the Eighth International Conference on Learning Representations (ICLR 2020)},
month = {April},
title = {On the Variance of the Adaptive Learning Rate and Beyond},
year = {2020}
}
Author
Hyeongchan Kim / @kozistr
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pytorch-optimizer-0.0.1.tar.gz
(19.2 kB
view details)
Built Distribution
File details
Details for the file pytorch-optimizer-0.0.1.tar.gz
.
File metadata
- Download URL: pytorch-optimizer-0.0.1.tar.gz
- Upload date:
- Size: 19.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fa8c7b111cc8de044fbd5187532589cd7e966f177743b358af40eb618d6fcf02 |
|
MD5 | ab763c8ac5845219de58bb4a3b7c8daa |
|
BLAKE2b-256 | 37cd1e2e260c2682bef84ec9c161b7f3aeded486ffdc95a0d6b7454e5ac6e793 |
File details
Details for the file pytorch_optimizer-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: pytorch_optimizer-0.0.1-py3-none-any.whl
- Upload date:
- Size: 21.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f4708f1bc64c6bed02282badfe81170f6c8dd26663aa8efb6f6002f58589caac |
|
MD5 | e20beea609dc94d5993e0ceb5dbcc142 |
|
BLAKE2b-256 | 633b417ebc52ab2c98f6724f1ae56b4378944b4a10dfeceaf4a6b22273a2cfc9 |