Skip to main content

optimizer & lr scheduler implementations in PyTorch with clean-code, strict types. Also, including useful optimization ideas.

Project description

Build

workflow Documentation Status

Quality

codecov black

Package

PyPI version PyPI pyversions

Status

PyPi download PyPi month download

pytorch-optimizer is bunch of optimizer collections in PyTorch. Also, including useful optimization ideas.
Most of the implementations are based on the original paper, but I added some tweaks.
Highly inspired by pytorch-optimizer.

Documentation

https://pytorch-optimizers.readthedocs.io/en/latest/

Usage

Install

$ pip3 install -U pytorch-optimizer

or

$ pip3 install -U --no-deps pytorch-optimizer

Simple Usage

from pytorch_optimizer import AdamP

model = YourModel()
optimizer = AdamP(model.parameters())

# or you can use optimizer loader, simply passing a name of the optimizer.

from pytorch_optimizer import load_optimizer

model = YourModel()
opt = load_optimizer(optimizer='adamp')
optimizer = opt(model.parameters())

Also, you can load the optimizer via torch.hub

import torch

model = YourModel()
opt = torch.hub.load('kozistr/pytorch_optimizer', 'adamp')
optimizer = opt(model.parameters())

And you can check the supported optimizers & lr schedulers.

from pytorch_optimizer import get_supported_optimizers, get_supported_lr_schedulers

supported_optimizers = get_supported_optimizers()
supported_lr_schedulers = get_supported_lr_schedulers()

Supported Optimizers

Optimizer

Description

Official Code

Paper

AdaBelief

Adapting Step-sizes by the Belief in Observed Gradients

github

https://arxiv.org/abs/2010.07468

AdaBound

Adaptive Gradient Methods with Dynamic Bound of Learning Rate

github

https://openreview.net/forum?id=Bkg3g2R9FX

AdaHessian

An Adaptive Second Order Optimizer for Machine Learning

github

https://arxiv.org/abs/2006.00719

AdamD

Improved bias-correction in Adam

https://arxiv.org/abs/2110.10828

AdamP

Slowing Down the Slowdown for Momentum Optimizers on Scale-invariant Weights

github

https://arxiv.org/abs/2006.08217

diffGrad

An Optimization Method for Convolutional Neural Networks

github

https://arxiv.org/abs/1909.11015v3

MADGRAD

A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic

github

https://arxiv.org/abs/2101.11075

RAdam

On the Variance of the Adaptive Learning Rate and Beyond

github

https://arxiv.org/abs/1908.03265

Ranger

a synergistic optimizer combining RAdam and LookAhead, and now GC in one optimizer

github

https://bit.ly/3zyspC3

Ranger21

a synergistic deep learning optimizer

github

https://arxiv.org/abs/2106.13731

Lamb

Large Batch Optimization for Deep Learning

github

https://arxiv.org/abs/1904.00962

Shampoo

Preconditioned Stochastic Tensor Optimization

github

https://arxiv.org/abs/1802.09568

Nero

Learning by Turning: Neural Architecture Aware Optimisation

github

https://arxiv.org/abs/2102.07227

Adan

Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models

github

https://arxiv.org/abs/2208.06677

Adai

Disentangling the Effects of Adaptive Learning Rate and Momentum

github

https://arxiv.org/abs/2006.15815

GSAM

Surrogate Gap Guided Sharpness-Aware Minimization

github

https://openreview.net/pdf?id=edONMAnhLu-

D-Adaptation

Learning-Rate-Free Learning by D-Adaptation

github

https://arxiv.org/abs/2301.07733

Useful Resources

Several optimization ideas to regularize & stabilize the training. Most of the ideas are applied in Ranger21 optimizer.

Also, most of the captures are taken from Ranger21 paper.

Adaptive Gradient Clipping

Gradient Centralization

Softplus Transformation

Gradient Normalization

Norm Loss

Positive-Negative Momentum

Linear learning rate warmup

Stable weight decay

Explore-exploit learning rate schedule

Lookahead

Chebyshev learning rate schedule

(Adaptive) Sharpness-Aware Minimization

On the Convergence of Adam and Beyond

Gradient Surgery for Multi-Task Learning

Adaptive Gradient Clipping

This idea originally proposed in NFNet (Normalized-Free Network) paper.
AGC (Adaptive Gradient Clipping) clips gradients based on the unit-wise ratio of gradient norms to parameter norms.

Gradient Centralization

https://raw.githubusercontent.com/kozistr/pytorch_optimizer/main/assets/gradient_centralization.png

Gradient Centralization (GC) operates directly on gradients by centralizing the gradient to have zero mean.

Softplus Transformation

By running the final variance denom through the softplus function, it lifts extremely tiny values to keep them viable.

Gradient Normalization

Norm Loss

https://raw.githubusercontent.com/kozistr/pytorch_optimizer/main/assets/norm_loss.png

Positive-Negative Momentum

https://raw.githubusercontent.com/kozistr/pytorch_optimizer/main/assets/positive_negative_momentum.png

Linear learning rate warmup

https://raw.githubusercontent.com/kozistr/pytorch_optimizer/main/assets/linear_lr_warmup.png

Stable weight decay

https://raw.githubusercontent.com/kozistr/pytorch_optimizer/main/assets/stable_weight_decay.png

Explore-exploit learning rate schedule

https://raw.githubusercontent.com/kozistr/pytorch_optimizer/main/assets/explore_exploit_lr_schedule.png

Lookahead

k steps forward, 1 step back. Lookahead consisting of keeping an exponential moving average of the weights that is
updated and substituted to the current weights every k_{lookahead} steps (5 by default).

Chebyshev learning rate schedule

Acceleration via Fractal Learning Rate Schedules

(Adaptive) Sharpness-Aware Minimization

Sharpness-Aware Minimization (SAM) simultaneously minimizes loss value and loss sharpness.
In particular, it seeks parameters that lie in neighborhoods having uniformly low loss.

On the Convergence of Adam and Beyond

Gradient Surgery for Multi-Task Learning

Citations

AdamP

Adaptive Gradient Clipping

Chebyshev LR Schedules

Gradient Centralization

Lookahead

RAdam

Norm Loss

Positive-Negative Momentum

Explore-Exploit Learning Rate Schedule

On the adequacy of untuned warmup for adaptive optimization

Stable weight decay regularization

Softplus transformation

MADGRAD

AdaHessian

AdaBound

Adabelief

Sharpness-aware minimization

Adaptive Sharpness-aware minimization

diffGrad

On the Convergence of Adam and Beyond

Gradient surgery for multi-task learning

AdamD

Shampoo

Nero

Adan

Adai

GSAM

D-Adaptation

Citation

Please cite original authors of optimization algorithms. If you use this software, please cite it as below. Or you can get from “cite this repository” button.

@software{Kim_pytorch_optimizer_Bunch_of_2022,
    author = {Kim, Hyeongchan},
    month = {1},
    title = {{pytorch_optimizer: Bunch of optimizer implementations in PyTorch with clean-code, strict types}},
    version = {1.0.0},
    year = {2022}
}

Author

Hyeongchan Kim / @kozistr

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch_optimizer-2.4.1.tar.gz (53.5 kB view details)

Uploaded Source

Built Distribution

pytorch_optimizer-2.4.1-py3-none-any.whl (79.2 kB view details)

Uploaded Python 3

File details

Details for the file pytorch_optimizer-2.4.1.tar.gz.

File metadata

  • Download URL: pytorch_optimizer-2.4.1.tar.gz
  • Upload date:
  • Size: 53.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.11.1 Linux/5.15.0-1031-azure

File hashes

Hashes for pytorch_optimizer-2.4.1.tar.gz
Algorithm Hash digest
SHA256 32f3aafde8011878c8c8006138231d1269150d4fa604f5dd9e006ebb0b2c3417
MD5 dd66cc9156adef9f710fec8a209c0423
BLAKE2b-256 5d8346327df7c8c28986d2b241953cd72e08161f2e1200552cc5675ab4151667

See more details on using hashes here.

File details

Details for the file pytorch_optimizer-2.4.1-py3-none-any.whl.

File metadata

  • Download URL: pytorch_optimizer-2.4.1-py3-none-any.whl
  • Upload date:
  • Size: 79.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.11.1 Linux/5.15.0-1031-azure

File hashes

Hashes for pytorch_optimizer-2.4.1-py3-none-any.whl
Algorithm Hash digest
SHA256 3de81a5d791ff2b4467f2970445a93d805267b18cabb24bb1e4101e4a84033ce
MD5 9e62b2ec831a2caa666f52af73fc26c0
BLAKE2b-256 3c483ca7e276db11070840596140c4004ac71761563bcbab6164ed9a66132d70

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page