Skip to main content

No project description provided

Project description


PyTorchFI

BackgroundUsageCodeContributorsCitationLicense

Background

PyTorchFI is a runtime perturbation tool for deep neural networks (DNNs), implemented for the popular PyTorch deep learning platform. PyTorchFI enables users to perform perturbation on weights or neurons of a DNN during runtime. It is extremely versatile for dependability and reliability research, with applications including resiliency analysis of classification networks, resiliency analysis of object detection networks, analysis of models robust to adversarial attacks, training resilient models, and for DNN interpertability.

An example of a use case for PyTorchFI is to simulate an error by performaing a fault-injection on an object recognition model.

Golden Output Output with Fault Injection

Usage

Download on PyPI here, or take a look at our documentation at pytorchfi.dev.

You can also learn more with our interactive demo.

Installing

From Pip

Install using pip install pytorchfi

From Source

Download this repository into your project folder.

Importing

Import the entire package:

import pytorchfi

Import a specific module:

from pytorchfi import core

Testing

pytest

Code

Structure

The main source code of PyTorchFI is held in pytorchfi, which carries both core and error_models.py implementations.

Formatting

All python code is formatted with black.

Contributors

Before contributing, please refer to our contributing guidelines.

Citation

View the published paper. If you use or reference PyTorchFI, please cite:

@INPROCEEDINGS{PytorchFIMahmoudAggarwalDSML20,
author={A. {Mahmoud} and N. {Aggarwal} and A. {Nobbe} and J. R. S. {Vicarte} and S. V. {Adve} and C. W. {Fletcher} and I. {Frosio} and S. K. S. {Hari}},
booktitle={2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W)},
title={PyTorchFI: A Runtime Perturbation Tool for DNNs},
year={2020},
pages={25-31},
}

Funding Sources

This project was funded in part by the Applications Driving Architectures (ADA) Research Center, a JUMP Center co-sponsored by SRC and DARPA, and in collaboration with NVIDIA Research.

License

NCSA License. Copyright © 2021 RSim Research Group.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorchfi-0.6.0.tar.gz (16.6 kB view details)

Uploaded Source

Built Distribution

pytorchfi-0.6.0-py3-none-any.whl (21.2 kB view details)

Uploaded Python 3

File details

Details for the file pytorchfi-0.6.0.tar.gz.

File metadata

  • Download URL: pytorchfi-0.6.0.tar.gz
  • Upload date:
  • Size: 16.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.7.1 requests/2.9.1 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.5.2

File hashes

Hashes for pytorchfi-0.6.0.tar.gz
Algorithm Hash digest
SHA256 82d34c73db6935e5e09c38d3d77b8e4b7aeefd0d5a2f94f8a26c253dcb3fee90
MD5 a60930cae42f60ccc155bbfd6758a4fe
BLAKE2b-256 86c1dd78acaf8ea884a523c7ab6d609d758e48b6288d1f45ca05646392d65672

See more details on using hashes here.

File details

Details for the file pytorchfi-0.6.0-py3-none-any.whl.

File metadata

  • Download URL: pytorchfi-0.6.0-py3-none-any.whl
  • Upload date:
  • Size: 21.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.7.1 requests/2.9.1 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.5.2

File hashes

Hashes for pytorchfi-0.6.0-py3-none-any.whl
Algorithm Hash digest
SHA256 5f3adb8538631fa3f2f98086a648e90abbf550548500a44e77ae194c40c7dbc9
MD5 d7ed6ebf306a51a6fc846605060c3723
BLAKE2b-256 dd94e0fdbf6490b196bf2258ea659e3c25195c7b8837d93b9d19e20826926025

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page