Skip to main content

PyTorchFire: A GPU-Accelerated Wildfire Simulator with Differentiable Cellular Automata

Project description

PyTorchFire: A GPU-Accelerated Wildfire Simulator with Differentiable Cellular Automata

Hatch project Read the Docs

Installation

Install with minimal dependencies:

pip install pytorchfire

Install with dependencies for examples:

pip install 'pytorchfire[examples]'

Quick Start

pip install pytorchfire

Then,

To perform wildfire prediction:

from pytorchfire import WildfireModel

model = WildfireModel() # Create a model with default parameters and environment data
model = model.cuda() # Move the model to GPU
# model.reset(seed=seed) # Reset the model with a seed
for _ in range(100): # Run the model for 100 steps
    model.compute() # Compute the next state

To perform parameter calibration:

import torch
from pytorchfire import WildfireModel, BaseTrainer

model = WildfireModel()

trainer = BaseTrainer(model)

trainer.train()
trainer.evaluate()

API Documents

See at Our Read the Docs.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorchfire-1.0.0.post1.tar.gz (19.7 kB view details)

Uploaded Source

Built Distribution

pytorchfire-1.0.0.post1-py3-none-any.whl (12.1 kB view details)

Uploaded Python 3

File details

Details for the file pytorchfire-1.0.0.post1.tar.gz.

File metadata

  • Download URL: pytorchfire-1.0.0.post1.tar.gz
  • Upload date:
  • Size: 19.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.27.0

File hashes

Hashes for pytorchfire-1.0.0.post1.tar.gz
Algorithm Hash digest
SHA256 490a4b5716a3993b2efe0d5181100fa1bc44877b1e4ef2e71f2dac081866898e
MD5 3d2c34767be8e00ad674f18061113036
BLAKE2b-256 2c24f30242db61b00088bd873dea4a261a1eb3313bc00e41712a86a6bf344746

See more details on using hashes here.

File details

Details for the file pytorchfire-1.0.0.post1-py3-none-any.whl.

File metadata

File hashes

Hashes for pytorchfire-1.0.0.post1-py3-none-any.whl
Algorithm Hash digest
SHA256 f3a7fdad4224161ba0f64c0b38b593109f1bf1d6142786e364a6dc2c04d22ba0
MD5 4389849b015aad00eb36eab8638fa936
BLAKE2b-256 3804a53822c9911b8013258ec8bab14d49d30a31f2db0df2cadfc8d5a3df4ea4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page