Skip to main content

Quantum bit and the usual gates in torch tensors straight from the Wikipedia

Project description

pypytorchqbit

Quantum bit and the usual gates in torch tensors straight from the Wikipedia.

apply

Apply gate to a state

For example this chain evaluates to zero:

>>> from functools import reduce
>>> s = reduce( apply, [Zero(), H(), PauliZ(), H(), PauliX()])
>>> Measure.one(s)
0

Swap places of a bit

>>> one = Combine(Zero(), One())
>>> Measure.one(one)
1
>>> one
tensor([[0.+0.j],
        [1.+0.j],
        [0.+0.j],
        [0.+0.j]])
>>> two = apply(one, SWAP())
>>> Measure.one(two)
2
>>> two
tensor([[0.+0.j],
        [0.+0.j],
        [1.+0.j],
        [0.+0.j]])

Quantum bit definitions

Zero

Qubit that evaluates as zero every single time

>>> Zero
|0>
>>> Zero()
tensor([[1.+0.j],
        [0.+0.j]])
>>> Measure.one(Zero())
0

One

Qubit that evaluates as one every single time

>>> One
|1>
>>> One()
tensor([[0.+0.j],
        [1.+0.j]])
>>> Measure.one(One())
1

Plus

Qubit that evaluates as one and zero evenly

>>> Plus
|+>
>>> Plus()
tensor([[0.7071+0.j],
        [0.7071+0.j]])

Minus

Qubit that evaluates as one and zero evenly

>>> Minus
|->
>>> Minus()
tensor([[ 0.7071+0.j],
        [-0.7071+0.j]])

Measure

Simulates the measure process of the qubit

>>> Measure.one(One())
1

Combine

Use Kronecker product of two arrays to combine qubits.

>>> Combine(Zero(),Zero())
tensor([[1.+0.j],
        [0.+0.j],
        [0.+0.j],
        [0.+0.j]])


>>> from functools import reduce
>>> reduce(Combine, [One(), Zero(), Zero()])
tensor([[0.+0.j],
        [0.+0.j],
        [0.+0.j],
        [0.+0.j],
        [1.+0.j],
        [0.+0.j],
        [0.+0.j],
        [0.+0.j]])
>>> Combine(One(), Zero(), Zero())
tensor([[0.+0.j],
        [0.+0.j],
        [0.+0.j],
        [0.+0.j],
        [1.+0.j],
        [0.+0.j],
        [0.+0.j],
        [0.+0.j]])

Each row represents the probability of getting it's index's value as a result

>>> Measure.one(Combine(Zero(),Zero()))
0

>>> Measure.one( Combine(One(), Combine(Zero(),Zero())) )
4

equal

The equal is a test if the two qubit states

>>> equal(One(), One())
True
>>> equal(One(), Zero())
False

Quantum gates

Identity

Identity gate

>>> Identity
Identity
>>> Identity()
tensor([[1.+0.j, 0.+0.j],
        [0.+0.j, 1.+0.j]])
>>> Identity(2)
tensor([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
        [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],
        [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
        [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]])

H

Hadamard gate

>>> H
H
>>> H()
tensor([[ 0.7071+0.j,  0.7071+0.j],
        [ 0.7071+0.j, -0.7071+0.j]])

PauliX

Pauli X gate

>>> PauliX
X
>>> PauliX()
tensor([[0.+0.j, 1.+0.j],
        [1.+0.j, 0.+0.j]])

PauliY

Pauli Y gate

>>> PauliY
Y
>>> PauliY()
tensor([[0.+0.j, -0.-1.j],
        [0.+1.j, 0.+0.j]])

PauliZ

Pauli Z gate

>>> PauliZ
Z
>>> PauliZ()
tensor([[ 1.+0.j,  0.+0.j],
        [ 0.+0.j, -1.+0.j]])

Phase

Phase (S, P) gate

>>> Phase
P
>>> Phase()
tensor([[1.+0.j, 0.+0.j],
        [0.+0.j, 0.+1.j]])

R

R is the custom phase shift gate

>>> from math import pi
>>> R(pi/4)
R(0.7853981633974483)
>>> R(pi/4)()
tensor([[1.0000+0.0000j, 0.0000+0.0000j],
        [0.0000+0.0000j, 0.7071+0.7071j]])

CNOT

CNOT is the Controlled Not gate (CX)

>>> CNOT
CX
>>> CNOT()
tensor([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
        [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],
        [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],
        [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j]])

CPauliZ

CPauliZ is the Controlled Pauli Z gate (CZ)

>>> CPauliZ
CZ
>>> CPauliZ()
tensor([[ 1.+0.j,  0.+0.j,  0.+0.j,  0.+0.j],
        [ 0.+0.j,  1.+0.j,  0.+0.j,  0.+0.j],
        [ 0.+0.j,  0.+0.j,  1.+0.j,  0.+0.j],
        [ 0.+0.j,  0.+0.j,  0.+0.j, -1.+0.j]])

SWAP

SWAP is the qbit swap gate

>>> SWAP
SWAP
>>> SWAP()
tensor([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
        [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
        [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],
        [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]])

Pauli group

P1

P1 is the First Pauli Group done from the cross product of [-1, 1, -1j, 1j] and [Identity(), PauliX(), PauliY(), PauliZ()]

>>> P1
P1
>>> p1 = list(P1())
>>> len(p1)
16
>>> equal(p1[0], -1*Identity())
True
>>> equal(p1[1], 1*Identity())
True
>>> equal(p1[2], -1j*Identity())
True
>>> equal(p1[3], 1j*Identity())
True
>>> equal(p1[15], 1j*PauliZ())
True

p1 is a group, so these apply:

Associativy:

>>> all([ any([equal(apply(a,b), c) for c in P1()]) for a in P1() for b in P1()])
True

Identity:

>>> equal( Identity(), p1[1])
True

>>> all([ equal(apply(a, Identity()), a) for a in P1()])
True

Inverse element:

>>> all([ any([equal(apply(a, b), Identity()) for b in P1()]) for a in P1() ])
True

Pn

Pn is the n:th Pauli group instance

>>> P2 = Pn(2)
>>> P2
P2
>>> p2 = list(P2())
>>> len(p2)
1024
>>> p2[0]
tensor([[-1.+0.j,  0.+0.j,  0.+0.j,  0.+0.j],
        [ 0.+0.j, -1.+0.j,  0.+0.j,  0.+0.j],
        [ 0.+0.j,  0.+0.j, -1.+0.j,  0.+0.j],
        [ 0.+0.j,  0.+0.j,  0.+0.j, -1.+0.j]])

>>> p2[1]
tensor([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
        [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],
        [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
        [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]])

p2 is a group, so these apply:

Associativy:

>>> import random
>>> all_products = [apply(a,b) for a in p2 for b in p2]
>>> all([ any([equal(p, c) for c in p2]) for p in random.sample(all_products, 1000)])
True

Identity:

>>> equal(Identity(2), p2[1])
True
>>> i2 = p2[1]
>>> all([ equal(apply(a, i2), a) for a in p2])
True

Inverse element:

>>> all([ any([equal(apply(a, b), i2) for b in p2]) for a in random.sample(p2, 20)])
True

Stabilizer codes

S_5_1_3

S_5_1_3 error correction code encodes one logical qubit into five physical qubits. S_5_1_3 protects against an arbitrary single-qubit error and it has code distance three codes.

>>> S_5_1_3
S_5_1_3

>>> S_5_1_3.g1()
tensor([[ 0.+0.j,  1.+0.j,  1.+0.j,  0.+0.j,  1.+0.j,  0.+0.j,  0.+0.j,  1.+0.j,  1.+0.j,  0.+0.j],
        [ 1.+0.j,  0.+0.j,  0.+0.j, -1.+0.j,  0.+0.j, -1.+0.j,  1.+0.j,  0.+0.j,  0.+0.j,  1.+0.j]])

>>> S_5_1_3.g2()
tensor([[ 1.+0.j,  0.+0.j,  0.+0.j,  1.+0.j,  1.+0.j,  0.+0.j,  1.+0.j,  0.+0.j,  0.+0.j,  1.+0.j],
        [ 0.+0.j,  1.+0.j,  1.+0.j,  0.+0.j,  0.+0.j, -1.+0.j,  0.+0.j, -1.+0.j,  1.+0.j,  0.+0.j]])

>>> S_5_1_3.g3()
tensor([[ 0.+0.j,  1.+0.j,  1.+0.j,  0.+0.j,  0.+0.j,  1.+0.j,  1.+0.j,  0.+0.j,  1.+0.j,  0.+0.j],
        [ 1.+0.j,  0.+0.j,  0.+0.j,  1.+0.j,  1.+0.j,  0.+0.j,  0.+0.j, -1.+0.j,  0.+0.j, -1.+0.j]])

>>> S_5_1_3.g4()
tensor([[ 1.+0.j,  0.+0.j,  0.+0.j,  1.+0.j,  1.+0.j,  0.+0.j,  0.+0.j,  1.+0.j,  1.+0.j,  0.+0.j],
        [ 0.+0.j, -1.+0.j,  1.+0.j,  0.+0.j,  0.+0.j,  1.+0.j,  1.+0.j,  0.+0.j,  0.+0.j, -1.+0.j]])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

pytorchqbit-0.0.1-py3-none-any.whl (9.3 kB view details)

Uploaded Python 3

File details

Details for the file pytorchqbit-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: pytorchqbit-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 9.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for pytorchqbit-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 27504878dc3850b0029a3e3c3179262d700dfdc244758bfc10b79e38bae81a9b
MD5 2b010774d5e39e124e389bfe95e5afe7
BLAKE2b-256 965dae40ccee87a7f2dfaf4f586c7056e445e23d987ddea251a8dd5c91c26d7f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page