Skip to main content

PyTorch implementation of PyRadiomics Extractor

Project description

PyTorchRadiomics

PyTorch implementation of PyRadiomics Extractor

Performance Improvement

It can speed up voxel-based features extraction significantly, especially GLCM features.

Using it to extract non-voxel-based features is NOT recommended (it is slower).

Voxel-based Features Extraction Performance Comparison

Intel i9-10900K v.s. RTX 3080 10G (dtype=torch.float64), Size=$16^3$

Type CPU Time Torch Time Max Abs. Error Max Rel. Error
GLCM 636s 23.8s 2.32e-09 7.92e-12
FirstOrder 4.3s 0.244s 2.84e-14 2.22e-16
GLRLM 1.71s 0.731s 2.72e-12 8.88e-16
NGTDM 4.03s 0.398s 3.27e-11 3.99e-15

Installation

pip install pytorchradiomics

Usage

Only two extra keyword arguments:

  1. device: str or torch.device, default: "cuda"
  2. dtype: torch.dtype, default: torch.float64

Direct usage:

from torchradiomics import (TorchRadiomicsFirstOrder, TorchRadiomicsGLCM,
                            TorchRadiomicsGLRLM, TorchRadiomicsNGTDM,
                            inject_torch_radiomics, restore_radiomics)

ext = TorchRadiomicsGLCM(
    img_norm, mask_norm,
    voxelBased=True, padDistance=kernel,
    kernelRadius=kernel, maskedKernel=False, voxelBatch=512,
    dtype=torch.float64, # it is default
    device="cuda:0",
    **get_default_settings())

features = ext.execute()

Or use injection to use RadiomicsFeatureExtractor:

from radiomics.featureextractor import RadiomicsFeatureExtractor
from torchradiomics import (TorchRadiomicsFirstOrder, TorchRadiomicsGLCM,
                            TorchRadiomicsGLRLM, TorchRadiomicsNGTDM,
                            inject_torch_radiomics, restore_radiomics)

inject_torch_radiomics() # replace cpu version with torch version

ext = RadiomicsFeatureExtractor(
    voxelBased=True, padDistance=kernel,
    kernelRadius=kernel, maskedKernel=False, voxelBatch=512,
    dtype=torch.float64, # it is default
    device="cuda:0",
    **get_default_settings())
ext.execute(img, mask, voxelBased=True)

restore_radiomics() # restore

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorchradiomics-0.0.5.tar.gz (22.7 kB view details)

Uploaded Source

Built Distribution

pytorchradiomics-0.0.5-py3-none-any.whl (29.1 kB view details)

Uploaded Python 3

File details

Details for the file pytorchradiomics-0.0.5.tar.gz.

File metadata

  • Download URL: pytorchradiomics-0.0.5.tar.gz
  • Upload date:
  • Size: 22.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.10.14

File hashes

Hashes for pytorchradiomics-0.0.5.tar.gz
Algorithm Hash digest
SHA256 72d75d4faba96d5d9f90b383944e87774275955ef855f6c79da3f201f0dd720e
MD5 a579f75788dcec0af3855a33cc1f1b2f
BLAKE2b-256 a02d462ee778a99a19f9be904a7f3f97cdd90f3ce49ebca9a70c3217f5aa419e

See more details on using hashes here.

File details

Details for the file pytorchradiomics-0.0.5-py3-none-any.whl.

File metadata

File hashes

Hashes for pytorchradiomics-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 217b890755545c6f64980767d52b6d0d56f32de813b269fff4b5f3c1732f85fe
MD5 8ceab26abc9178ee1ee97626def76c1f
BLAKE2b-256 4c3a09b407489d741333796abd272eda1a1e250917154fe3ccb57cfc360c357c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page