Skip to main content

Numerically stable implementations of batched SE(3) exp and log maps

Project description

pytorchse3

Install

pip install pytorchse3

How to use

import torch

from pytorchse3.se3 import se3_exp_map, se3_log_map

Here are two transformation matrices for which PyTorch3D recovers the wrong log map (see this issue).

T = torch.Tensor(
    [
        [
            [-0.7384057045, 0.3333132863, -0.5862244964, 0.0000000000],
            [0.3520625532, -0.5508944392, -0.7566816807, 0.0000000000],
            [-0.5751599669, -0.7651259303, 0.2894364297, 0.0000000000],
            [-0.1840534210, -0.1836946011, 0.9952554703, 1.0000000000],
        ],
        [
            [-0.7400283217, 0.5210028887, -0.4253400862, 0.0000000000],
            [0.5329059958, 0.0683888718, -0.8434065580, 0.0000000000],
            [-0.4103286564, -0.8508108258, -0.3282552958, 0.0000000000],
            [-0.1197679043, 0.1799146235, 0.5538908839, 1.0000000000],
        ],
    ],
).transpose(-1, -2)

pytorchse3 computes the correct log map.

log_T_vee = se3_log_map(T)
log_T_vee
tensor([[ 1.1319,  1.4831, -2.5131, -0.8503, -0.1170,  0.7346],
        [ 1.1288,  2.2886, -1.8147, -0.8812,  0.0367, -0.1004]])

Exponentiating the log map recovers the original transformation matrix with 1e-4 absolute error.

eq_T = se3_exp_map(log_T_vee)
assert torch.allclose(T, eq_T, atol=1e-4)
T - eq_T
tensor([[[-9.2983e-06, -2.3842e-07,  1.1504e-05,  2.9802e-08],
         [-5.1558e-06,  8.5235e-06, -8.6427e-06, -2.9802e-08],
         [ 8.6427e-06, -6.4373e-06,  4.4703e-07,  0.0000e+00],
         [ 0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00]],

        [[ 8.0466e-06,  1.6212e-05,  6.0201e-06, -3.7253e-08],
         [ 4.5896e-06,  8.6352e-06,  3.3975e-06,  2.9802e-08],
         [-8.5831e-06,  1.0610e-05, -1.6809e-05,  0.0000e+00],
         [ 0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00]]])

References

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorchse3-0.0.3.tar.gz (6.7 kB view details)

Uploaded Source

Built Distribution

pytorchse3-0.0.3-py3-none-any.whl (6.7 kB view details)

Uploaded Python 3

File details

Details for the file pytorchse3-0.0.3.tar.gz.

File metadata

  • Download URL: pytorchse3-0.0.3.tar.gz
  • Upload date:
  • Size: 6.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pytorchse3-0.0.3.tar.gz
Algorithm Hash digest
SHA256 ecda68926ea06ab746172db588d0ed7bd87793c25346ce7a52c8a6631302d87b
MD5 0faad13c18c1de1cbd3caa489d6bf1e1
BLAKE2b-256 0cfdaf35bf585b82124c31ae8aa2fea4c20ed5e0e113d985156d9fa60bc04ce8

See more details on using hashes here.

File details

Details for the file pytorchse3-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: pytorchse3-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 6.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pytorchse3-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 07cdca16dcdf3561d1be2fe9f586262d21f84c3291b02a097c630eec7e2fac78
MD5 710d2861f6ef5f7e2b95beafba875a4a
BLAKE2b-256 c50f3c7770978ece4c9947da3d60636d9d812cc470007eed69e5c4dc94741f58

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page