Numerically stable implementations of batched SE(3) exp and log maps
Project description
pytorchse3
Install
pip install pytorchse3
How to use
import torch
from pytorchse3.se3 import se3_exp_map, se3_log_map
Here are two transformation matrices for which PyTorch3D recovers the
wrong log map (see this
issue).
T = torch.Tensor(
[
[
[-0.7384057045, 0.3333132863, -0.5862244964, 0.0000000000],
[0.3520625532, -0.5508944392, -0.7566816807, 0.0000000000],
[-0.5751599669, -0.7651259303, 0.2894364297, 0.0000000000],
[-0.1840534210, -0.1836946011, 0.9952554703, 1.0000000000],
],
[
[-0.7400283217, 0.5210028887, -0.4253400862, 0.0000000000],
[0.5329059958, 0.0683888718, -0.8434065580, 0.0000000000],
[-0.4103286564, -0.8508108258, -0.3282552958, 0.0000000000],
[-0.1197679043, 0.1799146235, 0.5538908839, 1.0000000000],
],
],
).transpose(-1, -2)
pytorchse3 computes the correct log map.
log_T_vee = se3_log_map(T)
log_T_vee
tensor([[ 1.1319, 1.4831, -2.5131, -0.8503, -0.1170, 0.7346],
[ 1.1288, 2.2886, -1.8147, -0.8812, 0.0367, -0.1004]])
Exponentiating the log map recovers the original transformation matrix with 1e-4 absolute error.
eq_T = se3_exp_map(log_T_vee)
assert torch.allclose(T, eq_T, atol=1e-4)
T - eq_T
tensor([[[-9.2983e-06, -2.3842e-07, 1.1504e-05, 2.9802e-08],
[-5.1558e-06, 8.5235e-06, -8.6427e-06, -2.9802e-08],
[ 8.6427e-06, -6.4373e-06, 4.4703e-07, 0.0000e+00],
[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00]],
[[ 8.0466e-06, 1.6212e-05, 6.0201e-06, -3.7253e-08],
[ 4.5896e-06, 8.6352e-06, 3.3975e-06, 2.9802e-08],
[-8.5831e-06, 1.0610e-05, -1.6809e-05, 0.0000e+00],
[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00]]])
References
pytorchse3implements log/exp maps defined in Section 2 and 3 of Ethan Eade’s tutorial- Our numerically stable
so3_log_mapis a PyTorch port ofpytransform3d - Taylor expansions for some coefficients in
se3_log_mapare taken fromH2-Mapping
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file pytorchse3-0.0.3.tar.gz.
File metadata
- Download URL: pytorchse3-0.0.3.tar.gz
- Upload date:
- Size: 6.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
ecda68926ea06ab746172db588d0ed7bd87793c25346ce7a52c8a6631302d87b
|
|
| MD5 |
0faad13c18c1de1cbd3caa489d6bf1e1
|
|
| BLAKE2b-256 |
0cfdaf35bf585b82124c31ae8aa2fea4c20ed5e0e113d985156d9fa60bc04ce8
|
File details
Details for the file pytorchse3-0.0.3-py3-none-any.whl.
File metadata
- Download URL: pytorchse3-0.0.3-py3-none-any.whl
- Upload date:
- Size: 6.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
07cdca16dcdf3561d1be2fe9f586262d21f84c3291b02a097c630eec7e2fac78
|
|
| MD5 |
710d2861f6ef5f7e2b95beafba875a4a
|
|
| BLAKE2b-256 |
c50f3c7770978ece4c9947da3d60636d9d812cc470007eed69e5c4dc94741f58
|