Summary of PyTorch Models just like `model.summary() in Keras
Project description
PyTorch Model Parameters Summary
Install using pip
pip install pytorchsummary
Example 1
from torch import nn
from pytorchsummary import summary
class CNNET(nn.Module):
def __init__(self):
super(CNNET,self).__init__()
self.layer = nn.Sequential(
nn.Conv2d(3,16,5), # 28-5+1
nn.ReLU(), #24
nn.MaxPool2d(2,2), # 12
nn.Conv2d(16,32,3), # 12+1-3
nn.ReLU(), # 10
nn.MaxPool2d(2,2), # 5
nn.Conv2d(32,64,5), # 11-3+1
nn.ReLU(),
nn.Conv2d(64,10,1)
)
def forward(self,x):
x = self.layer(x)
return x
m = CNNET()
summary((3,128,128),m)
Output
------------------------------------------------------------------------------------------------------------------------------------------------------
Conv2d-1 [1, 16, 124, 124] [16, 3, 5, 5] 1216 (1200 + 16) True True
ReLU-2 [1, 16, 124, 124]
MaxPool2d-3 [1, 16, 62, 62]
Conv2d-4 [1, 32, 60, 60] [32, 16, 3, 3] 4640 (4608 + 32) True True
ReLU-5 [1, 32, 60, 60]
MaxPool2d-6 [1, 32, 30, 30]
Conv2d-7 [1, 64, 26, 26] [64, 32, 5, 5] 51264 (51200 + 64) True True
ReLU-8 [1, 64, 26, 26]
Conv2d-9 [1, 10, 26, 26] [10, 64, 1, 1] 650 (640 + 10) True True
______________________________________________________________________________________________________________________________________________________
Total parameters 57,770
Total Non-Trainable parameters 0
Total Trainable parameters 57,770
(57770, 57770, 0)
for i,j in enumerate(m.parameters()):
if i==2:
break
j.requires_grad=False
summary((3,128,128),m,border=True)
Layer Output Shape Kernal Shape #params #(weights + bias) requires_grad
------------------------------------------------------------------------------------------------------------------------------------------------------
Conv2d-1 [1, 16, 124, 124] [16, 3, 5, 5] 1216 (1200 + 16) False False
______________________________________________________________________________________________________________________________________________________
ReLU-2 [1, 16, 124, 124]
______________________________________________________________________________________________________________________________________________________
MaxPool2d-3 [1, 16, 62, 62]
______________________________________________________________________________________________________________________________________________________
Conv2d-4 [1, 32, 60, 60] [32, 16, 3, 3] 4640 (4608 + 32) True True
______________________________________________________________________________________________________________________________________________________
ReLU-5 [1, 32, 60, 60]
______________________________________________________________________________________________________________________________________________________
MaxPool2d-6 [1, 32, 30, 30]
______________________________________________________________________________________________________________________________________________________
Conv2d-7 [1, 64, 26, 26] [64, 32, 5, 5] 51264 (51200 + 64) True True
______________________________________________________________________________________________________________________________________________________
ReLU-8 [1, 64, 26, 26]
______________________________________________________________________________________________________________________________________________________
Conv2d-9 [1, 10, 26, 26] [10, 64, 1, 1] 650 (640 + 10) True True
______________________________________________________________________________________________________________________________________________________
______________________________________________________________________________________________________________________________________________________
Total parameters 57,770
Total Non-Trainable parameters 1,216
Total Trainable parameters 56,554
(56554, 57770, 1216)
Example 2
from torchvision import models
from pytorchsummary import summary
m = models.alexnet(False)
summary((3,224,224),m)
# this function returns the total number of
# parameters (int) in a model
ouput
Layer Output Shape Kernal Shape #params #(weights + bias) requires_grad
------------------------------------------------------------------------------------------------------------------------------------------------------
Conv2d-1 [1, 64, 55, 55] [64, 3, 11, 11] 23296 (23232 + 64) True True
ReLU-2 [1, 64, 55, 55]
MaxPool2d-3 [1, 64, 27, 27]
Conv2d-4 [1, 192, 27, 27] [192, 64, 5, 5] 307392 (307200 + 192) True True
ReLU-5 [1, 192, 27, 27]
MaxPool2d-6 [1, 192, 13, 13]
Conv2d-7 [1, 384, 13, 13] [384, 192, 3, 3] 663936 (663552 + 384) True True
ReLU-8 [1, 384, 13, 13]
Conv2d-9 [1, 256, 13, 13] [256, 384, 3, 3] 884992 (884736 + 256) True True
ReLU-10 [1, 256, 13, 13]
Conv2d-11 [1, 256, 13, 13] [256, 256, 3, 3] 590080 (589824 + 256) True True
ReLU-12 [1, 256, 13, 13]
MaxPool2d-13 [1, 256, 6, 6]
AdaptiveAvgPool2d-14 [1, 256, 6, 6]
Dropout-15 [1, 9216]
Linear-16 [1, 4096] [4096, 9216] 37752832 (37748736 + 4096) True True
ReLU-17 [1, 4096]
Dropout-18 [1, 4096]
Linear-19 [1, 4096] [4096, 4096] 16781312 (16777216 + 4096) True True
ReLU-20 [1, 4096]
Linear-21 [1, 1000] [1000, 4096] 4097000 (4096000 + 1000) True True
______________________________________________________________________________________________________________________________________________________
Total parameters 61,100,840
Total Non-Trainable parameters 0
Total Trainable parameters 61,100,840
(61100840, 61100840, 0)
Calculating the number of specific layer, or layer frequencies
from pytorchsummary import get_num_layers
print(get_num_layers(m)) # alexnet model
Output:
{'Conv2d': 5,
'ReLU': 7,
'MaxPool2d': 3,
'AdaptiveAvgPool2d': 1,
'Dropout': 2,
'Linear': 3}
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pytorchsummary-1.3.0.tar.gz
(4.6 kB
view details)
Built Distribution
File details
Details for the file pytorchsummary-1.3.0.tar.gz
.
File metadata
- Download URL: pytorchsummary-1.3.0.tar.gz
- Upload date:
- Size: 4.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 60139081ede1db84178507059572482bed47ff67cc686a0173ddde09a81a3025 |
|
MD5 | 178bf240b5c876e8056d7dc0df0abeae |
|
BLAKE2b-256 | ba14488e8a6489c802c5544580faf0a3cc6a572ed8462c64deca4e382ede4120 |
File details
Details for the file pytorchsummary-1.3.0-py3-none-any.whl
.
File metadata
- Download URL: pytorchsummary-1.3.0-py3-none-any.whl
- Upload date:
- Size: 5.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0463ee021c92a5144e956f5edabb74e44d796cad627454d4829488b77fc64b9b |
|
MD5 | 8038266d54fbdb6f60dac2068fecbe66 |
|
BLAKE2b-256 | d94c03701317ba3a23deb99b3ce8c8581103c19c0d83ba4bea6a9613f6717798 |