TPU Python API
Project description
IVA TPU Python API
Main entities
TPUDevice
TPUDevice is a device handle
TPUProgram
TPUProgram contains TPU instructions and weigths data
TPUProgramInfo
Object can be used to configure inference.
config = TPUProgramInfo()
config.max_tasks_count = 4 # configures depth of tasks queue in driver
config.disable_static_checker = true # disables static checker for program
program = TPUProgram("program.tpu", config)
TPUInference
TPUInference contains input/output data
Example
import asyncio
import numpy as np
from iva_tpu import TPUDevice, TPUProgram, TPUInference
from iva_applications.resnet50 import image_to_tensor
from iva_applications.imagenet import tpu_tensor_to_classes
from PIL import Image
image = Image.open('ILSVRC2012_val_00000045.JPEG')
tensor = image_to_tensor(image)
device = TPUDevice()
program = TPUProgram("resnet50.tpu") #default TPUProgramInfo is totally fine
device.load_program(program)
inference = TPUInference(program)
inference.load([tensor])
status_future = device.load_inference(inference) # device returns future for inference status
event_loop = asyncio.get_event_loop()
status = event_loop.run_until_complete(status_future)
assert status.is_success # check that there is no errors during inference
output = inference.get() # get results
tpu_tensor_to_classes(output[0], top=1)
TPU Dictionary interface
...
program = TPUProgram("resnet50.tpu")
inference = TPUInference(program)
inference.load({"Placeholder:0": tensor})
...
assert status.is_success
output = inference.get(as_dist=True)
tpu_tensor_to_classes(output["logits:0"], top=1)
TPU Blocking interface
status = device.load_inference_sync(inference) #would block until completion
TPU Raw buffer examples
import asyncio
from iva_tpu import TPUDevice, TPUProgram, TPUInference, ProcessingMode
program = TPUProgram("omega_program_dnn_quant_3.0.0.tpu")
device = TPUDevice()
device.load_program(program)
inference = TPUInference(program)
with open("f.bin", "rb") as f:
buf=f.read()
inference.load([buf], mode=ProcessingMode.RAW)
asyncio.get_event_loop().run_until_complete(device.load_inference(inference))
outputs = inference.get(mode=ProcessingMode.RAW)
for i in range(3):
o = outputs[i]
with open(f"o{i}.bin", "wb") as f:
f.write(o)
TPU Single inference statistics examples
result = device.load_inference_sync(inference)
result.timings # contains statistics about inference
result.timings["queue_timings"] # contains array of timings for 3 queues (QUEUE_TRANSFER_TO, QUEUE_EXECUTOR, QUEUE_TRANSFER_FROM)
result.timings["queue_timings"][%d] # contains tuple of 2 elements: idle time and actual work time
result.timings["queue_timings"][%d][%d] # contains tuple of 3 values: last, average, maximum through all inferences for the device object
result.timings["execution_timing"][%d] # same as before but with execution on tpu timings
TPU Global statistics examples
device = TPUDevice()
device.stats # returns object with global statistics about the current device
device.stats["mem"] # current usage of memory in the device
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pytpu-14.4.9.tar.gz
(9.9 kB
view details)
File details
Details for the file pytpu-14.4.9.tar.gz
.
File metadata
- Download URL: pytpu-14.4.9.tar.gz
- Upload date:
- Size: 9.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c891d7e254f4187e8f87d5d06cd6e232c8104a235902d9be29e4915b7a56c6ef |
|
MD5 | c93de05fa30ea6d01dc9b9177fc12f51 |
|
BLAKE2b-256 | 60fb99dc251cdd26ea625f52ee29d2d8f4d98558f8ed4792f796fb689a90d934 |