Skip to main content

TPU Python API

Project description

IVA TPU Python API

Main entities

TPUDevice

TPUDevice is a device handle

TPUProgram

TPUProgram contains TPU instructions and weigths data

TPUProgramInfo

Object can be used to configure inference.

config = TPUProgramInfo()
config.max_tasks_count = 4 # configures depth of tasks queue in driver
config.disable_static_checker = true # disables static checker for program
program = TPUProgram("program.tpu", config)

TPUInference

TPUInference contains input/output data

Example

import asyncio
import numpy as np
from iva_tpu import TPUDevice, TPUProgram, TPUInference

from iva_applications.resnet50 import image_to_tensor
from iva_applications.imagenet import tpu_tensor_to_classes
from PIL import Image

image = Image.open('ILSVRC2012_val_00000045.JPEG')
tensor = image_to_tensor(image)

device = TPUDevice()
program = TPUProgram("resnet50.tpu")  # default TPUProgramInfo is totally fine
device.load_program(program)
inference = TPUInference(program)
inference.load([tensor])
status_future = device._load_inference(inference)  # device returns future for inference status
event_loop = asyncio.get_event_loop()
status = event_loop.run_until_complete(status_future)
assert status.is_success  # check that there is no errors during inference
output = inference.get()  # get results
tpu_tensor_to_classes(output[0], top=1)

TPU Dictionary interface

...
program = TPUProgram("resnet50.tpu")
inference = TPUInference(program)
inference.load({"Placeholder:0": tensor})
...
assert status.is_success
output = inference.get(as_dist=True)
tpu_tensor_to_classes(output["logits:0"], top=1)

TPU Blocking interface

status = device.load_inference_sync(inference) #would block until completion

TPU Raw buffer examples

import asyncio
from iva_tpu import TPUDevice, TPUProgram, TPUInference, ProcessingMode
program = TPUProgram("omega_program_dnn_quant_3.0.0.tpu")
device = TPUDevice()
device.load_program(program)
inference = TPUInference(program)

with open("f.bin", "rb") as f:
    buf=f.read()

inference.load([buf], mode=ProcessingMode.RAW)
asyncio.get_event_loop().run_until_complete(device.load_inference(inference))
outputs = inference.get(mode=ProcessingMode.RAW)

for i in range(3):
  o = outputs[i]
  with open(f"o{i}.bin", "wb") as f:
    f.write(o)

TPU Single inference statistics examples

result = device.load_inference_sync(inference)
result.timings # contains statistics about inference
result.timings["queue_timings"] # contains array of timings for 3 queues (QUEUE_TRANSFER_TO, QUEUE_EXECUTOR, QUEUE_TRANSFER_FROM)
result.timings["queue_timings"][%d] # contains tuple of 2 elements: idle time and actual work time
result.timings["queue_timings"][%d][%d] # contains tuple of 3 values: last, average, maximum through all inferences for the device object
result.timings["execution_timing"][%d] # same as before but with execution on tpu timings

TPU Global statistics examples

device = TPUDevice()
device.stats # returns object with global statistics about the current device
device.stats["mem"] # current usage of memory in the device

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytpu-15.0.8.tar.gz (14.9 kB view details)

Uploaded Source

File details

Details for the file pytpu-15.0.8.tar.gz.

File metadata

  • Download URL: pytpu-15.0.8.tar.gz
  • Upload date:
  • Size: 14.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.3

File hashes

Hashes for pytpu-15.0.8.tar.gz
Algorithm Hash digest
SHA256 8da7d2ef39d3e9f69412096511962d939ee8544223a04d3b7b6452666fce1837
MD5 98f7d013389500c17e4645812c81d436
BLAKE2b-256 c6f80589fed4b0589149635c86cc754ee50a933b78e8d3d508ebfb893431c51f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page