Skip to main content

A Task Queue Scheduler Framework.

Project description

https://travis-ci.org/MacHu-GWU/pytq-project.svg?branch=master https://codecov.io/gh/MacHu-GWU/pytq-project/branch/master/graph/badge.svg https://img.shields.io/pypi/v/pytq.svg https://img.shields.io/pypi/l/pytq.svg https://img.shields.io/pypi/pyversions/pytq.svg https://img.shields.io/badge/Star_Me_on_GitHub!--None.svg?style=social

Welcome to pytq Documentation

pytq (Python Task Queue) is a task scheduler library.

Problem we solve:

  1. You have N task to do.

  2. each task has input_data, and after been processed, we got output_data.

pytq provide these feature out-of-the-box (And it’s all customizable).

  1. Save output_data to data-persistence system.

  2. Filter out duplicate input data.

  3. Built-in Multi thread processor boost the speed.

  4. Nice built-in log system.

  5. And its easy to define how you gonna:
    • process your input_data

    • integrate with your data persistence system

    • filter duplicates input_data

    • retrive output_data

Example

Suppose you have some url to crawl, and you don’t want to crawl those url you successfully crawled, and also you want to save your crawled data in database.

#!/usr/bin/env python
# -*- coding: utf-8 -*-

"""
This script implement multi-thread safe, a sqlite backed task queue scheduler.
"""

from pytq import SqliteDictScheduler


# Define your input_data model
class UrlRequest(object):
    def __init__(self, url, context_data=None):
        self.url = url # your have url to crawl
        self.context_data = context_data # and maybe some context data to use


class Scheduler(SqliteDictScheduler):
    # (Required) define how you gonna process your data
    def user_process(self, input_data):
        # you need to implement get_html_from_url yourself
        html = get_html_from_url(input_data.url)

        # you need to implement parse_html yourself
        output_data = parse_html(html)
        return output_data

s = Scheduler(user_db_path="example.sqlite")

# let's have some urls
input_data_queue = [
    UrlRequest(url="https://pypi.python.org/pypi/pytq"),
    UrlRequest(url="https://pypi.python.org/pypi/crawlib"),
    UrlRequest(url="https://pypi.python.org/pypi/loggerFactory"),
]

# execute multi thread process
s.do(input_data_queue, multiprocess=True)

# print output
for id, outpupt_data in s.items():
    ...

Customize:

class Scheduler(SqliteDictScheduler):
    # (Optional) define the identifier of input_data (for duplicate)
    def user_hash_input(self, input_data):
        return input_data.url

    # (Optional) define how do you save output_data to database
    # Here we just use the default one
    def user_post_process(self, task):
        self._default_post_process(task)

    # (Optional) define how do you skip crawled url
    # Here we just use the default one
    def user_is_duplicate(self, task):
        return self._default_is_duplicate(task)

TODO: more example is coming.

Install

pytq is released on PyPI, so all you need is:

$ pip install pytq

To upgrade to latest version:

$ pip install --upgrade pytq

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytq-0.0.2.tar.gz (38.8 kB view details)

Uploaded Source

Built Distribution

pytq-0.0.2-py2-none-any.whl (53.0 kB view details)

Uploaded Python 2

File details

Details for the file pytq-0.0.2.tar.gz.

File metadata

  • Download URL: pytq-0.0.2.tar.gz
  • Upload date:
  • Size: 38.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pytq-0.0.2.tar.gz
Algorithm Hash digest
SHA256 9494d091ffb90fcb86f12a5be90b390f183df32d24a049dd8d22041c962aca42
MD5 ce9c7c3f1bb09afb06058f92617cba00
BLAKE2b-256 b526ebb317c08ae96106ae312d1168a84de626a0f31905867615f29aefead85e

See more details on using hashes here.

File details

Details for the file pytq-0.0.2-py2-none-any.whl.

File metadata

File hashes

Hashes for pytq-0.0.2-py2-none-any.whl
Algorithm Hash digest
SHA256 aa95511dedc4e1f86c9ca953007cbbdf44674beb23aca0740499866a496a5140
MD5 349a5d025c6d5b61368f27a426436db3
BLAKE2b-256 423ad198ea3991470dd0b99eb0b9d69cf4280e87ae104a4ece9104362d5e148c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page