Skip to main content

A Task Queue Scheduler Framework.

Project description

https://travis-ci.org/MacHu-GWU/pytq-project.svg?branch=master https://codecov.io/gh/MacHu-GWU/pytq-project/branch/master/graph/badge.svg https://img.shields.io/pypi/v/pytq.svg https://img.shields.io/pypi/l/pytq.svg https://img.shields.io/pypi/pyversions/pytq.svg https://img.shields.io/badge/Star_Me_on_GitHub!--None.svg?style=social

Welcome to pytq Documentation

pytq (Python Task Queue) is a task scheduler library.

Problem we solve:

  1. You have N task to do.

  2. each task has input_data, and after been processed, we got output_data.

pytq provide these feature out-of-the-box (And it’s all customizable).

  1. Save output_data to data-persistence system.

  2. Filter out duplicate input data.

  3. Built-in Multi thread processor boost the speed.

  4. Nice built-in log system.

  5. And its easy to define how you gonna:
    • process your input_data

    • integrate with your data persistence system

    • filter duplicates input_data

    • retrive output_data

Example

Suppose you have some url to crawl, and you don’t want to crawl those url you successfully crawled, and also you want to save your crawled data in database.

#!/usr/bin/env python
# -*- coding: utf-8 -*-

"""
This script implement multi-thread safe, a sqlite backed task queue scheduler.
"""

from pytq import SqliteDictScheduler


# Define your input_data model
class UrlRequest(object):
    def __init__(self, url, context_data=None):
        self.url = url # your have url to crawl
        self.context_data = context_data # and maybe some context data to use


class Scheduler(SqliteDictScheduler):
    # (Required) define how you gonna process your data
    def user_process(self, input_data):
        # you need to implement get_html_from_url yourself
        html = get_html_from_url(input_data.url)

        # you need to implement parse_html yourself
        output_data = parse_html(html)
        return output_data

s = Scheduler(user_db_path="example.sqlite")

# let's have some urls
input_data_queue = [
    UrlRequest(url="https://pypi.python.org/pypi/pytq"),
    UrlRequest(url="https://pypi.python.org/pypi/crawlib"),
    UrlRequest(url="https://pypi.python.org/pypi/loggerFactory"),
]

# execute multi thread process
s.do(input_data_queue, multiprocess=True)

# print output
for id, outpupt_data in s.items():
    ...

Customize:

class Scheduler(SqliteDictScheduler):
    # (Optional) define the identifier of input_data (for duplicate)
    def user_hash_input(self, input_data):
        return input_data.url

    # (Optional) define how do you save output_data to database
    # Here we just use the default one
    def user_post_process(self, task):
        self._default_post_process(task)

    # (Optional) define how do you skip crawled url
    # Here we just use the default one
    def user_is_duplicate(self, task):
        return self._default_is_duplicate(task)

TODO: more example is coming.

Install

pytq is released on PyPI, so all you need is:

$ pip install pytq

To upgrade to latest version:

$ pip install --upgrade pytq

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytq-0.0.4.tar.gz (41.1 kB view details)

Uploaded Source

Built Distribution

pytq-0.0.4-py2-none-any.whl (57.3 kB view details)

Uploaded Python 2

File details

Details for the file pytq-0.0.4.tar.gz.

File metadata

  • Download URL: pytq-0.0.4.tar.gz
  • Upload date:
  • Size: 41.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pytq-0.0.4.tar.gz
Algorithm Hash digest
SHA256 4aae0fec073935023b95cd778eafa3e9ecb75cfc61cba88a0cb69f331ad822cd
MD5 1d4042747de849e190faed0ea6d2f50d
BLAKE2b-256 fbf21d5106ef6635a3345bc3ccc0ad93c6d5853a5af69096e96b44df92b11e08

See more details on using hashes here.

File details

Details for the file pytq-0.0.4-py2-none-any.whl.

File metadata

File hashes

Hashes for pytq-0.0.4-py2-none-any.whl
Algorithm Hash digest
SHA256 ed76c94880140389a03085cd8e7c46780980f2fea4341b28108349501c226228
MD5 428166ee281d0c8a3cfddeeafda25390
BLAKE2b-256 f6991c6699a58321beb1243573b9575db4fd1ef70d6c2faaeffe3f22a3f819ed

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page