Python package for loading Stanford Sentiment Treebank corpus
Project description
SST Utils
---------
Utilities for loading and visualizing Stanford Sentiment Treebank.
See examples below for usage.
@author Jonathan Raiman
Javascript code by Jason Chuang and Stanford NLP modified and taken from [Stanford NLP Sentiment Analysis demo](http://nlp.stanford.edu:8080/sentiment/rntnDemo.html).
### Visualization
Allows for visualization using Jason Chuang's Javascript and CSS within an IPython notebook:
```python
import pytreebank
# load the sentiment treebank corpus in the parenthesis format,
# e.g. "(4 (2 very ) (3 good))"
dataset = pytreebank.import_tree_corpus("train.txt")
# add Javascript and CSS to the Ipython notebook
pytreebank.LabeledTree.inject_visualization_javascript()
# select and example to visualize
example = dataset[0]
# display it in the page
example.display()
```
![Example visualization using pytreebank](visualization_example.png)
### Lines and Labels
To use the corpus to output spans from the different trees you can call the `to_labeled_lines` and `to_lines` method of a `LabeledTree`. The first returned sentence in those lists is always the root sentence:
```python
import pytreebank
dataset = pytreebank.import_tree_corpus("train.txt")
example = dataset[0]
# extract spans from the tree.
for label, sentence in example.to_labeled_lines():
print("%s has sentiment label %s" % (
sentence,
["very negative", "negative", "neutral", "positive", "very positive"][label]
))
```
---------
Utilities for loading and visualizing Stanford Sentiment Treebank.
See examples below for usage.
@author Jonathan Raiman
Javascript code by Jason Chuang and Stanford NLP modified and taken from [Stanford NLP Sentiment Analysis demo](http://nlp.stanford.edu:8080/sentiment/rntnDemo.html).
### Visualization
Allows for visualization using Jason Chuang's Javascript and CSS within an IPython notebook:
```python
import pytreebank
# load the sentiment treebank corpus in the parenthesis format,
# e.g. "(4 (2 very ) (3 good))"
dataset = pytreebank.import_tree_corpus("train.txt")
# add Javascript and CSS to the Ipython notebook
pytreebank.LabeledTree.inject_visualization_javascript()
# select and example to visualize
example = dataset[0]
# display it in the page
example.display()
```
![Example visualization using pytreebank](visualization_example.png)
### Lines and Labels
To use the corpus to output spans from the different trees you can call the `to_labeled_lines` and `to_lines` method of a `LabeledTree`. The first returned sentence in those lists is always the root sentence:
```python
import pytreebank
dataset = pytreebank.import_tree_corpus("train.txt")
example = dataset[0]
# extract spans from the tree.
for label, sentence in example.to_labeled_lines():
print("%s has sentiment label %s" % (
sentence,
["very negative", "negative", "neutral", "positive", "very positive"][label]
))
```
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pytreebank-0.1.9.tar.gz
(31.4 kB
view details)
File details
Details for the file pytreebank-0.1.9.tar.gz
.
File metadata
- Download URL: pytreebank-0.1.9.tar.gz
- Upload date:
- Size: 31.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | def3abd1119f26c06a643dc965af925fde1bcc89d9e9cc086b0069791ed73879 |
|
MD5 | f1c43598bbf1d713f4f43611179021bd |
|
BLAKE2b-256 | eac336f2526798f824fa4fcb174bfa2ea9f52b9c4276f2fa6df3fde96da6a09e |