Python package for loading Stanford Sentiment Treebank corpus
Project description
SST Utils
---------
Utilities for downloading, importing, and visualizing the [Stanford Sentiment Treebank](http://nlp.stanford.edu/sentiment/treebank.html).
See examples below for usage.
@author Jonathan Raiman
Javascript code by Jason Chuang and Stanford NLP modified and taken from [Stanford NLP Sentiment Analysis demo](http://nlp.stanford.edu:8080/sentiment/rntnDemo.html).
### Visualization
Allows for visualization using Jason Chuang's Javascript and CSS within an IPython notebook:
```python
import pytreebank
# load the sentiment treebank corpus in the parenthesis format,
# e.g. "(4 (2 very ) (3 good))"
dataset = pytreebank.load_sst()
# add Javascript and CSS to the Ipython notebook
pytreebank.LabeledTree.inject_visualization_javascript()
# select and example to visualize
example = dataset["train"][0]
# display it in the page
example.display()
```
![Example visualization using pytreebank](visualization_example.png)
### Lines and Labels
To use the corpus to output spans from the different trees you can call the `to_labeled_lines` and `to_lines` method of a `LabeledTree`. The first returned sentence in those lists is always the root sentence:
```python
import pytreebank
dataset = pytreebank.load_sst()
example = dataset["train"][0]
# extract spans from the tree.
for label, sentence in example.to_labeled_lines():
print("%s has sentiment label %s" % (
sentence,
["very negative", "negative", "neutral", "positive", "very positive"][label]
))
```
### Download/Loading control:
Change the save/load directory by passing a path (this will look for
`train.txt`, `dev.txt` and `test.txt` files under the directory).
```
dataset = pytreebank.load_sst("/path/to/sentiment/")
```
To just load a single dataset file:
```
train_data = pytreebank.import_tree_corpus("/path/to/sentiment/train.txt")
```
---------
Utilities for downloading, importing, and visualizing the [Stanford Sentiment Treebank](http://nlp.stanford.edu/sentiment/treebank.html).
See examples below for usage.
@author Jonathan Raiman
Javascript code by Jason Chuang and Stanford NLP modified and taken from [Stanford NLP Sentiment Analysis demo](http://nlp.stanford.edu:8080/sentiment/rntnDemo.html).
### Visualization
Allows for visualization using Jason Chuang's Javascript and CSS within an IPython notebook:
```python
import pytreebank
# load the sentiment treebank corpus in the parenthesis format,
# e.g. "(4 (2 very ) (3 good))"
dataset = pytreebank.load_sst()
# add Javascript and CSS to the Ipython notebook
pytreebank.LabeledTree.inject_visualization_javascript()
# select and example to visualize
example = dataset["train"][0]
# display it in the page
example.display()
```
![Example visualization using pytreebank](visualization_example.png)
### Lines and Labels
To use the corpus to output spans from the different trees you can call the `to_labeled_lines` and `to_lines` method of a `LabeledTree`. The first returned sentence in those lists is always the root sentence:
```python
import pytreebank
dataset = pytreebank.load_sst()
example = dataset["train"][0]
# extract spans from the tree.
for label, sentence in example.to_labeled_lines():
print("%s has sentiment label %s" % (
sentence,
["very negative", "negative", "neutral", "positive", "very positive"][label]
))
```
### Download/Loading control:
Change the save/load directory by passing a path (this will look for
`train.txt`, `dev.txt` and `test.txt` files under the directory).
```
dataset = pytreebank.load_sst("/path/to/sentiment/")
```
To just load a single dataset file:
```
train_data = pytreebank.import_tree_corpus("/path/to/sentiment/train.txt")
```
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pytreebank-0.2.0.tar.gz
(32.3 kB
view details)
File details
Details for the file pytreebank-0.2.0.tar.gz
.
File metadata
- Download URL: pytreebank-0.2.0.tar.gz
- Upload date:
- Size: 32.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 60a9b293c971378e5dcaa887f4a97725f3fbb5ba090ad64c2a50e7afb9b2a333 |
|
MD5 | d00778cb36cc0dc2c736449f98f97c63 |
|
BLAKE2b-256 | 97356e2ac40583e08e8ddb946c0e35f4e7a81f235005bdc9d565dd57e44841c3 |