Skip to main content

Python package for loading Stanford Sentiment Treebank corpus

Project description

SST Utils
---------

Utilities for downloading, importing, and visualizing the [Stanford Sentiment Treebank](http://nlp.stanford.edu/sentiment/treebank.html), a dataset capturing fine-grained sentiment over movie reviews.
See examples below for usage. Tested in Python `3.4.3` and `2.7.12`.

![Jonathan Raiman, author](https://img.shields.io/badge/Author-Jonathan%20Raiman%20-blue.svg)

Javascript code by Jason Chuang and Stanford NLP modified and taken from [Stanford NLP Sentiment Analysis demo](http://nlp.stanford.edu:8080/sentiment/rntnDemo.html).

[![PyPI version](https://badge.fury.io/py/pytreebank.svg)](https://badge.fury.io/py/pytreebank)
[![License](https://img.shields.io/badge/license-MIT-blue.svg)](LICENSE.md)

### Visualization

Allows for visualization using Jason Chuang's Javascript and CSS within an IPython notebook:

```python
import pytreebank
# load the sentiment treebank corpus in the parenthesis format,
# e.g. "(4 (2 very ) (3 good))"
dataset = pytreebank.load_sst()
# add Javascript and CSS to the Ipython notebook
pytreebank.LabeledTree.inject_visualization_javascript()
# select and example to visualize
example = dataset["train"][0]
# display it in the page
example.display()
```

![Example visualization using pytreebank](visualization_example.png)

### Lines and Labels

To use the corpus to output spans from the different trees you can call the `to_labeled_lines` and `to_lines` method of a `LabeledTree`. The first returned sentence in those lists is always the root sentence:

```python
import pytreebank
dataset = pytreebank.load_sst()
example = dataset["train"][0]

# extract spans from the tree.
for label, sentence in example.to_labeled_lines():
print("%s has sentiment label %s" % (
sentence,
["very negative", "negative", "neutral", "positive", "very positive"][label]
))
```

### Download/Loading control:

Change the save/load directory by passing a path (this will look for
`train.txt`, `dev.txt` and `test.txt` files under the directory).

```
dataset = pytreebank.load_sst("/path/to/sentiment/")
```

To just load a single dataset file:

```
train_data = pytreebank.import_tree_corpus("/path/to/sentiment/train.txt")
```


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytreebank-0.2.3.tar.gz (33.7 kB view details)

Uploaded Source

File details

Details for the file pytreebank-0.2.3.tar.gz.

File metadata

  • Download URL: pytreebank-0.2.3.tar.gz
  • Upload date:
  • Size: 33.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pytreebank-0.2.3.tar.gz
Algorithm Hash digest
SHA256 e2efc33bc54065978b048d11c647d66a378cd9cfeed31cda76c61200637ce78a
MD5 373da5ba66e813a20b76f4f55547c609
BLAKE2b-256 bc85a4c2b28aabf9a719e60f4d8657f643688a09c672103c8946a487f802f465

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page