Skip to main content

Python package for loading Stanford Sentiment Treebank corpus

Project description

SST Utils
---------

Utilities for downloading, importing, and visualizing the [Stanford Sentiment Treebank](http://nlp.stanford.edu/sentiment/treebank.html), a dataset capturing fine-grained sentiment over movie reviews.
See examples below for usage. Tested in Python `3.4.3` and `2.7.12`.

![Jonathan Raiman, author](https://img.shields.io/badge/Author-Jonathan%20Raiman%20-blue.svg)

Javascript code by Jason Chuang and Stanford NLP modified and taken from [Stanford NLP Sentiment Analysis demo](http://nlp.stanford.edu:8080/sentiment/rntnDemo.html).

[![PyPI version](https://badge.fury.io/py/pytreebank.svg)](https://badge.fury.io/py/pytreebank)
[![Build Status](https://travis-ci.org/JonathanRaiman/pytreebank.svg?branch=master)](https://travis-ci.org/JonathanRaiman/pytreebank)
[![License](https://img.shields.io/badge/license-MIT-blue.svg)](LICENSE.md)

### Visualization

Allows for visualization using Jason Chuang's Javascript and CSS within an IPython notebook:

```python
import pytreebank
# load the sentiment treebank corpus in the parenthesis format,
# e.g. "(4 (2 very ) (3 good))"
dataset = pytreebank.load_sst()
# add Javascript and CSS to the Ipython notebook
pytreebank.LabeledTree.inject_visualization_javascript()
# select and example to visualize
example = dataset["train"][0]
# display it in the page
example.display()
```

![Example visualization using pytreebank](visualization_example.png)

### Lines and Labels

To use the corpus to output spans from the different trees you can call the `to_labeled_lines` and `to_lines` method of a `LabeledTree`. The first returned sentence in those lists is always the root sentence:

```python
import pytreebank
dataset = pytreebank.load_sst()
example = dataset["train"][0]

# extract spans from the tree.
for label, sentence in example.to_labeled_lines():
print("%s has sentiment label %s" % (
sentence,
["very negative", "negative", "neutral", "positive", "very positive"][label]
))
```

### Download/Loading control:

Change the save/load directory by passing a path (this will look for
`train.txt`, `dev.txt` and `test.txt` files under the directory).

```
dataset = pytreebank.load_sst("/path/to/sentiment/")
```

To just load a single dataset file:

```
train_data = pytreebank.import_tree_corpus("/path/to/sentiment/train.txt")
```


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytreebank-0.2.4.tar.gz (33.9 kB view details)

Uploaded Source

File details

Details for the file pytreebank-0.2.4.tar.gz.

File metadata

  • Download URL: pytreebank-0.2.4.tar.gz
  • Upload date:
  • Size: 33.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pytreebank-0.2.4.tar.gz
Algorithm Hash digest
SHA256 7ff06acccb8a918f827b84b0ea5801ece908347b6b491bae22dd020834064365
MD5 2bc2633a39fa0bb61ea05cd7b327398d
BLAKE2b-256 69b5ee153b218cbfe39cad162f12fdb29dc46f69ee8748849575c166b6a29c7b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page