Skip to main content

Visualize, create, and operate on JAX PyTree in the most intuitive way possible.

Project description



Installation |Description |Quick Example |StatefulComputation |Benchamrks |Acknowledgements

Tests pyver pyver codestyle Open In Colab Downloads codecov Documentation Status GitHub commit activity DOI PyPI CodeFactor

๐Ÿ› ๏ธ Installation

pip install pytreeclass

Install development version

pip install git+https://github.com/ASEM000/pytreeclass

๐Ÿ“– Description

pytreeclass is a JAX-compatible class builder to create and operate on stateful JAX PyTrees in a performant and intuitive way, by building on familiar concepts found in numpy, dataclasses, and others.

See documentation and ๐Ÿณ Common recipes to check if this library is a good fit for your work. If you find the package useful consider giving it a ๐ŸŒŸ.

โฉ Quick Example

import jax
import jax.numpy as jnp
import pytreeclass as tc

@tc.autoinit
class Tree(tc.TreeClass):
    a: float = 1.0
    b: tuple[float, float] = (2.0, 3.0)
    c: jax.Array = jnp.array([4.0, 5.0, 6.0])

    def __call__(self, x):
        return self.a + self.b[0] + self.c + x


tree = Tree()
mask = jax.tree_map(lambda x: x > 5, tree)
tree = tree\
       .at["a"].set(100.0)\
       .at["b"][0].set(10.0)\
       .at[mask].set(100.0)

print(tree)
# Tree(a=100.0, b=(10.0, 3.0), c=[  4.   5. 100.])

print(tc.tree_diagram(tree))
# Tree
# โ”œโ”€โ”€ .a=100.0
# โ”œโ”€โ”€ .b:tuple
# โ”‚   โ”œโ”€โ”€ [0]=10.0
# โ”‚   โ””โ”€โ”€ [1]=3.0
# โ””โ”€โ”€ .c=f32[3](ฮผ=36.33, ฯƒ=45.02, โˆˆ[4.00,100.00])

print(tc.tree_summary(tree))
# โ”Œโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”
# โ”‚Name โ”‚Type  โ”‚Countโ”‚Size  โ”‚
# โ”œโ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ค
# โ”‚.a   โ”‚float โ”‚1    โ”‚      โ”‚
# โ”œโ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ค
# โ”‚.b[0]โ”‚float โ”‚1    โ”‚      โ”‚
# โ”œโ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ค
# โ”‚.b[1]โ”‚float โ”‚1    โ”‚      โ”‚
# โ”œโ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ค
# โ”‚.c   โ”‚f32[3]โ”‚3    โ”‚12.00Bโ”‚
# โ”œโ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ค
# โ”‚ฮฃ    โ”‚Tree  โ”‚6    โ”‚12.00Bโ”‚
# โ””โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”˜

# ** pass it to jax transformations **
# works with jit, grad, vmap, etc.

@jax.jit
@jax.grad
def sum_tree(tree: Tree, x):
    return sum(tree(x))

print(sum_tree(tree, 1.0))
# Tree(a=3.0, b=(3.0, 0.0), c=[1. 1. 1.])

๐Ÿ“œ Stateful computations

Under jax.jit jax requires states to be explicit, this means that for any class instance; variables needs to be separated from the class and be passed explictly. However when using TreeClass no need to separate the instance variables ; instead the whole instance is passed as a state.

Using the following pattern,Updating state functionally can be achieved under jax.jit

import jax
import pytreeclass as tc

class Counter(tc.TreeClass):
    def __init__(self, calls: int = 0):
        self.calls = calls

    def increment(self):
        self.calls += 1
counter = Counter() # Counter(calls=0)

Here, we define the update function. Since the increment method mutate the internal state, thus we need to use the functional approach to update the state by using .at. To achieve this we can use .at[method_name].__call__(*args,**kwargs), this functional call will return the value of this call and a new model instance with the update state.

@jax.jit
def update(counter):
    value, new_counter = counter.at["increment"]()
    return new_counter

for i in range(10):
    counter = update(counter)

print(counter.calls) # 10

โž• Benchmarks

Benchmark flatten/unflatten compared to Flax and Equinox

Open In Colab

CPUGPU
Benchmark simple training against `flax` and `equinox`

Training simple sequential linear benchmark against flax and equinox

Num of layers Flax/tc time
Open In Colab
Equinox/tc time
Open In Colab
10 1.427 6.671
100 1.1130 2.714

๐Ÿ“™ Acknowledgements

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytreeclass-0.9.2.tar.gz (55.7 kB view details)

Uploaded Source

Built Distribution

pytreeclass-0.9.2-py3-none-any.whl (46.2 kB view details)

Uploaded Python 3

File details

Details for the file pytreeclass-0.9.2.tar.gz.

File metadata

  • Download URL: pytreeclass-0.9.2.tar.gz
  • Upload date:
  • Size: 55.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pytreeclass-0.9.2.tar.gz
Algorithm Hash digest
SHA256 dbc2b13cead4c4ab3bb2cb026fce44ae673938d38d3e091e7f7c87ccaa1b7db8
MD5 2815430d5d64eeccbc527d25f11a588f
BLAKE2b-256 dd4f4970819ca7424d551ac4c02efb1cb2e0d20fb320a41998a9898d36af4c2e

See more details on using hashes here.

File details

Details for the file pytreeclass-0.9.2-py3-none-any.whl.

File metadata

  • Download URL: pytreeclass-0.9.2-py3-none-any.whl
  • Upload date:
  • Size: 46.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pytreeclass-0.9.2-py3-none-any.whl
Algorithm Hash digest
SHA256 de379df40a58bce323e4be1a55453fd8adcaa482f27c4024fa5bc05768589163
MD5 6b9f32658af5f559898dc95959c60fcb
BLAKE2b-256 bb63dda8f04586d299e895ddbbeaa0d18b994be047017142fd791c20cc5840e5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page