Skip to main content

Declarative, typed query language that compiles to SQL.

Project description

Trilogy

Website Discord

pytrilogy is an experimental implementation of the Trilogy language, a higher-level SQL that replaces tables/joins with a lightweight semantic binding layer.

Trilogy looks like SQL, but simpler. It's a modern SQL refresh targeted at SQL lovers who want reusability and simplicity with the power and iteratability of SQL. It compiles to SQL - making it easy to debug or integrate into existing workflows - and can be run against any supported SQL backend.

[!TIP] To get an overview of the language and run interactive examples, head to the documentation.

Installation: pip install pytrilogy

pytrilogy can be run locally to parse and execute trilogy model [.preql] files using the trilogy CLI tool, or can be run in python by importing the trilogy package.

You can read more about the project here and try out an interactive demo here.

Trilogy:

WHERE 
    name like '%lvis%'
SELECT
    name,
    count(name) as name_count
ORDER BY
    name_count desc
LIMIT 10;

Goals

vs SQL, the goals are:

Preserve:

  • Correctness
  • Accessibility

Enhance:

  • Simplicity
  • Understandability
  • Refactoring/mantainability
  • Reusability

Maintain:

  • Acceptable performance

Hello World

Save the following code in a file named hello.preql

key sentence_id int;
property sentence_id.word_one string; # comments after a definition 
property sentence_id.word_two string; # are syntactic sugar for adding
property sentence_id.word_three string; # a description to it

# comments in other places are just comments

# define our datasources as queries in duckdb
datasource word_one(
    sentence: sentence_id,
    word:word_one
)
grain(sentence_id)
query '''
select 1 as sentence, 'Hello' as word
union all
select 2, 'Bonjour'
''';

datasource word_two(
    sentence: sentence_id,
    word:word_two
)
grain(sentence_id)
query '''
select 1 as sentence, 'World' as word
union all
select 2 as sentence, 'World'
''';

datasource word_three(
    sentence: sentence_id,
    word:word_three
)
grain(sentence_id)
query '''
select 1 as sentence, '!' as word
union all
select 2 as sentence, '!'
''';

# an actual select statement
# joins are automatically resolved between the 3 sources
with sentences as
select sentence_id, word_one || ' ' || word_two ||  word_three as text;

SELECT
    --sentences.sentence_id,
    sentences.text
WHERE 
    sentences.sentence_id = 1
;

SELECT
    --sentences.sentence_id,
    sentences.text
WHERE 
    sentences.sentence_id = 2
;
# semicolon termination for all statements

Run the following from the directory the file is in.

trilogy run hello.trilogy duckdb

UI Preview

Backends

The current Trilogy implementation supports these backends:

  • Bigquery
  • SQL Server
  • DuckDB
  • Snowflake

Basic Example - Python

Trilogy can be run directly in python through the core SDK. Trilogy code can be defined and parsed inline or parsed out of files.

A bigquery example, similar to bigquery the quickstart.

from trilogy import Dialects, Environment

environment = Environment()

environment.parse('''

key name string;
key gender string;
key state string;
key year int;
key yearly_name_count int; int;


datasource usa_names(
    name:name,
    number:yearly_name_count,
    year:year,
    gender:gender,
    state:state
)
address bigquery-public-data.usa_names.usa_1910_2013;

'''
)
executor = Dialects.BIGQUERY.default_executor(environment=environment)

results = executor.execute_text(
'''SELECT
    name,
    sum(yearly_name_count) -> name_count 
WHERE
    name = 'Elvis'
ORDER BY
    name_count desc
LIMIT 10;
'''

)
# multiple queries can result from one text batch
for row in results:
    # get results for first query
    answers = row.fetchall()
    for x in answers:
        print(x)

Basic Example - CLI

Trilogy can be run through a CLI tool, also named 'trilogy'.

After installing trilogy, you can run the trilogy CLI with two required positional arguments; the first the path to a file or a direct command, and second the dialect to run.

trilogy run <cmd or path to trilogy file> <dialect>

To pass arguments to a backend, append additional -- flags after specifying the dialect.

Example: trilogy run "key x int; datasource test_source ( i:x) grain(in) address test; select x;" duckdb --path <path/to/database>

Bigquery Args

N/A, only supports default auth. In python you can pass in a custom client. support arbitrary cred paths.

DuckDB Args

  • path

Postgres Args

  • host
  • port
  • username
  • password
  • database

Snowflake Args

  • account
  • username
  • password

[!TIP] The CLI can also be used for formatting. Trilogy has a default formatting style that should always be adhered to. trilogy fmt <path to trilogy file>

More Examples

Interactive demo.

Additional examples can be found in the public model repository.

This is a good place to look for modeling examples.

Developing

Clone repository and install requirements.txt and requirements-test.txt.

Contributing

Please open an issue first to discuss what you would like to change, and then create a PR against that issue.

Similar in space

Trilogy combines two aspects; a semantic layer and a query language. Examples of both are linked below:

Python "semantic layers" are tools for defining data access to a warehouse in a more abstract way.

"Better SQL" has been a popular space. We believe Trilogy takes a different approach then the following, but all are worth checking out. Please open PRs/comment for anything missed!

Minimal Syntax Reference

IMPORT

import [path] as [alias];

CONCEPT

Types: string | int | float | bool | date | datetime | time | numeric(scale, precision) | timestamp | interval | list<[type]> | map<[type], [type]> | struct<name:[type], name:[type]>;

Key: key [name] [type];

Property: property [key>].[name] [type]; property x.y int; or property <[key](,[key])?>.<name> [type]; property <x,y>.z int;

Transformation: auto [name] <- [expression]; auto x <- y + 1;

DATASOURCE

datasource <name>(
    <column>:<concept>,
    <column>:<concept>,
)
grain(<concept>, <concept>)
address <table>;

SELECT

Primary acces

select
    <concept>,
    <concept>+1 -> <alias>
WHERE
    <concept> = <value>
ORDER BY
    <concept> asc|desc
;

CTE/ROWSET

Reusable virtual set of rows. Useful for windows, filtering.

with <alias> as
select
    <concept>,
    <concept>+1 -> <alias>
WHERE
    <concept> = <value>

select <alias>.<concept>;

PERSIST

Store output of a query in a warehouse table

persist <alias> as <table_name> from
<select>;

SHOW

Return generated SQL without executing.

show <select>;

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytrilogy-0.0.2.32.tar.gz (134.1 kB view details)

Uploaded Source

Built Distribution

pytrilogy-0.0.2.32-py3-none-any.whl (155.2 kB view details)

Uploaded Python 3

File details

Details for the file pytrilogy-0.0.2.32.tar.gz.

File metadata

  • Download URL: pytrilogy-0.0.2.32.tar.gz
  • Upload date:
  • Size: 134.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for pytrilogy-0.0.2.32.tar.gz
Algorithm Hash digest
SHA256 a61307d5024376305a881718dc69473277ceddc0ef624a4f0492d23cb7970e0a
MD5 94f2215782b2c18e3f88421373f3b2f7
BLAKE2b-256 a6fa4cd24dcd68a8b495e8bda8cb6002cc6fa663b7db9601724d8898bb553df9

See more details on using hashes here.

Provenance

The following attestation bundles were made for pytrilogy-0.0.2.32.tar.gz:

Publisher: pythonpublish.yml on trilogy-data/pytrilogy

Attestations:

File details

Details for the file pytrilogy-0.0.2.32-py3-none-any.whl.

File metadata

  • Download URL: pytrilogy-0.0.2.32-py3-none-any.whl
  • Upload date:
  • Size: 155.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for pytrilogy-0.0.2.32-py3-none-any.whl
Algorithm Hash digest
SHA256 f8798b72a355c3b5f6ab06fc6b142f914d4bc9d516dd367076528325c22d4e3e
MD5 efe31f7e17808b48b319e0fc7eb95d1a
BLAKE2b-256 5011ce0341d3e5e93109fc0fa19ba5550782085b7e4cb91288bda6c821539da2

See more details on using hashes here.

Provenance

The following attestation bundles were made for pytrilogy-0.0.2.32-py3-none-any.whl:

Publisher: pythonpublish.yml on trilogy-data/pytrilogy

Attestations:

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page