Train and predict string entropy based on character n-grams
Project description
Pytropic
[![Python package](https://github.com/willf/pytropic/actions/workflows/test.yml/badge.svg)](https://github.com/willf/pytropic/actions/workflows/test.yml)
<img alt=”An python with a lot of entropy” src=”https://user-images.githubusercontent.com/37049/192400489-7a2fdc49-b29a-4299-a1c6-97c8b97b2eaf.png” width=150>
Train and predict string entropy based on character n-grams
## Features
Train a model on a corpus of text
multiple n-gram sizes
Can name models
## Example
Train a model on a corpus of text
- ..ipython::
In [1]: from pytropic import pytropic
In [2]: en = pytropic.Model(name=’English 3-gram’, size=3)
In [3]: fr = pytropic.Model(name=’French 3-gram’, size=3)
In [4]: with open(‘./corpora/bible-english.txt’) as f: …: en.train(f) …:
In [5]: with open(‘./corpora/bible-french.txt’) as f: …: fr.train(f) …:
In [6]: t = {‘en’: en, ‘fr’: fr}
In [7]: min(t, key=lambda x: t[x].entropy(“this is a test”)) Out[7]: ‘en’
In [8]: min(t, key=lambda x: t[x].entropy(“c’est un test”)) Out[8]: ‘fr’
History
0.1.0 (2018-02-19)
First release on PyPI.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
Hashes for pytropic-1.0.0-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | da7ee00723e2a85f2a653fd627b44a90754c49260d7fcc381fe04a17b8d4c006 |
|
MD5 | de02036672f7d88d6bc98cd35357edc2 |
|
BLAKE2b-256 | 1d21260326dbf655ece726f9830b79c87e137199fc6090e9ee8b7c3d4560b9e5 |