Skip to main content

Toolbox for extracting trajectories and monitoring vessels from raw AIS records.

Project description

Python Trajectory Search Agent (PyTSA) for raw AIS records

This module provides a set of functionalities around Automatic Identification System (AIS) messages, such as

  • Decoding raw AIS messages
  • Extracting clean, practical and interpolated trajectories from the data, based on various (also user-defined) filters.
  • Providing an easy-to-use interface for observing target ships and their state around a given time and position.

Motivation

Simulation studies in maritime contexts often lack an easy-to-use model for vessel traffic extraction around a simulated vessel, as the large amounts of AIS records make it challenging and time-consuming to pinpoint the exact vessels to be monitored.

Also, for validating path-following, or collision avoidance systems, it is beneficial to use real-world trajectories, as they often provide a larger variety of movement patterns than simulated trajectories. However, the exact process of extracting the relevant information from the raw AIS data is often not sufficiently documented, thus making it difficult to reproduce the results.

Therefore, this module aims to provide a unified, open-source solution for extracting relevant trajectories from raw AIS data, as well as providing an easy-to-use interface for observing target ships around a given position and time.

Installation

Install the package via pip:

$ pip install pytsa-ais

Usage

Raw AIS data

One file of raw AIS records must only contain dynamic AIS messages (Types 1,2,3 and 18) or static AIS messages (Type 5). A combination of both is not supported. The data must be provided in the .csv format and must be named YYYY_MM_DD.csv. Other file names are not supported.

This is done to avoid extra-day sorting of the data, which would be necessary if the data was not sorted by date. Intra-day sorting is done regardless of the file name.

Individual files must contain the following columns:

  • timestamp: ISO 8601 parseable date format (e.g. "2021-07-03T00:00:00.000Z")
  • message_id: AIS message type (1,2,3,5,18)

For dynamic AIS messages (Types 1,2,3,18) additionally

  • raw_message: For messages of type 1,2,3,18, the raw message consists of a single AIVDM sentence.

For static AIS messages (Type 5) additionally:

  • raw_message1: First AIVDM sentence
  • raw_message2: Second AIVDM sentence

Example Table for dynamic AIS messages

timestamp message_id raw_message
2021-07-03T00:00:00.000Z 1 "!ABVDM,1,1,,B,177PhT001iPWhwJPsK=9DoQH0<>i,0*7C"

Example Table for static AIS messages

timestamp message_id raw_message1 raw_message2
2021-07-03T00:00:00.000Z 5 "!ABVDM,2,1,5,A,53aQ5aD2;PAQ0@8l000lE9LD8u8L00000000001??H<886?80@@C1F0CQ4R@,0*35" "!ABVDM,2,2,5,A,@0000000000,2*5A"

For more information on the AIS message structure, see here.

Decoding AIS messages

Once your raw AIS data is in the correct format, you can decode the AIS messages by calling the decode() function. The function takes as arguments the path to a directory containing the raw AIS data, as well as the path to the output directory. The function will then decode all .csv files in the input directory and save the decoded data to the output directory under the same file name.

from pytsa import decode

decode(
    source = "path/to/raw_dir",
    dest = "path/to/decoded_dir",
    njobs = 1
)

For decoding AIS messages, you can choose between single-processing and multi-processing decoding. The multi-processing decoding is recommended for large datasets containing multiple files, as it is significantly faster than single-process decoding. However, during decoding, the files are loaded into memory in their entirety, which may lead to memory issues for large datasets or a large number of jobs. Therefore, it is recommended to use single-processing decoding for smaller datasets or if you encounter memory issues. Parallel decoding may also not be avialable on Windows systems (due to the lack of testing on Windows systems, this is not guaranteed, sorry...)

Decoded AIS data

In case you already have decoded AIS messages, you have to make sure, that the fields of your .csv file at least partially match Msg12318Columns and Msg5Columns at pytsa/decode/filedescriptor.py.

In case you have a different data structure, you can either adapt the Msg12318Columns and Msg5Columns classes, or you can adapt the column names of your .csv file to match the column names of the Msg12318Columns and Msg5Columns classes.

Using the SearchAgent for extracting target ships

The central object of the module is the SearchAgent class, which provides an easy-to-use interface for extracting target ships around a given position and time.

Possible applications include:

  • Tracking traffic around a simulated route
  • Monitoring traffic around a fixed location
  • Extracting trajectories

The Search Agent must be instantiated with three components: Its BoundingBox, msg12318files and msg5files:

  • BoundingBox: Reference frame containing the spatial extent of the searchable area in degrees of latitude and longitude.

  • msg12318files: File path to a .csv file containing decoded dynamic AIS messages (Types 1,2,3 and 18 only) to consider for the search procedure. See the next section for details on the data structure.

  • msg5files: File path to the corresponding .csv file containing decoded static AIS messages (message type 5)

Example instantiation for a small area in the North Sea:

import pytsa
from pathlib import Path

# Lat-Lon Box with [lat,lon, SOG, COG] outputs
frame = pytsa.BoundingBox(
    LATMIN = 52.2, # [°N]
    LATMAX = 56.9, # [°N]
    LONMIN = 6.3,  # [°E]
    LONMAX = 9.5,  # [°E]
)

dynamic_data = Path("/path/to/dynamic.csv")
static_data = Path("/path/to/static.csv")

search_agent = pytsa.SearchAgent(
    msg12318file = dynamic_data,
    msg5file = static_data
    frame = frame
)

Monitoring vessel traffic around a given position

To commence a search for ships around a given location, it is mandatory to use a TimePosition object to store the position and time at which the search shall be commenced simultaneously. Example:

from pytsa import TimePosition

tpos = TimePosition(
    timestamp="2021-07-03T12:03:00.000Z",
    lat=52.245,
    lon=9.878
)

After defining a TimePosition, a search can be commenced by freezing the search agent at the given position and time

target_ships = search_agent.freeze(tpos)

yielding a list of TargetShip objects (see pytsa/targetship.py for more information).

By default, the resulting TargetShip objects used linear interpolation to estimate the current position, speed and course of the target ships. If instead, cubic spline interpolation is desired, the interpolation option can be set to spline. Additionally, the search_radius can be set to a custom value in nautical miles.

target_ships = search_agent.freeze(
    tpos, 
    interpolation="spline", 
    search_radius=5 # [nm]
)

To get the current Latitude, Longitude, SOG, COG for each TargetShip object at the provided timestamp, the observe() method can be used, returning a numpy array with the current position, speed and course.

for ship in target_ships:
    ship.observe()

# Example output for one ship
# 
# Interpolated COG ---------------
# Interpolated SOG -----------    |
# Interpolated Longitude-|   |    |
# Interpolated Latitude  |   |    |
#                v       v   v    v
>>> np.array([52.232,9.847,12.34,223.4])

Full example

import pytsa
from pathlib import Path

# Global geographic search area.
# Outside these bounds, no search will be commenced
frame = pytsa.BoundingBox(
    LATMIN = 52.2, # [°N]
    LATMAX = 56.9, # [°N]
    LONMIN = 6.3,  # [°E]
    LONMAX = 9.5,  # [°E]
)

# File containing AIS messages
dynamic_data = Path("/path/to/dynamic.csv")
static_data = Path("/path/to/static.csv")

# Instantiate the search agent with the source file 
# and the search area
search_agent = pytsa.SearchAgent(
    msg12318file = dynamic_data,
    msg5file = static_data
    frame = frame
)

# Provide a position and time for which the search
# will be carried out
tpos = pytsa.TimePosition(
    timestamp="2021-07-03T12:03:00.000Z",
    lat=52.245,
    lon=9.878
)

# Search for TargetVessels with 
# default settings: 
#   Linear interpolation, 
#   20 nm search radius
target_ships = search_agent.freeze(tpos)

# Extract the current position, speed and
# course for all found target vessels.
for ship in target_ships:
    ship.observe()

# Example output for one ship
>>> np.array([52.232,9.847,12.34,223.4])

Extracting trajectories

If instead of observing target ships around a given position, you want to extract trajectories from the data, you can use the SearchAgent.extract_all().

By default, the extract_all() method walks through the entire dataset and extracts all trajectories that are within the search area utilizing the split-point approach from Section 4 in our original paper. The method returns a dictionary with the MMSI as keys and the corresponding TargetShip objects as values.

all_ships = search_agent.extract_all()

To skip the split-point approach you can set the skip_tsplit parameter to True. This will result in TargetShip objects that only contain a single trajectory, which is the raw, time-ordered set of AIS messages for the given MMSI.

all_ships = search_agent.extract_all(skip_tsplit=True)

The extract_all() method used 4-core parallel processing by default. This can be adjusted by setting the njobs parameter to a custom value. Note, that high njobs values may lead to a slowdown due to the overhead of splitting the data into chunks and reassembling the results.

The trajectories of each TargetShip object can be accessed by the tracks attribute, which is of type list[Track]. Each Track within the tracks list contains the AIS messages for a single trajectory. See the pytsa.structs.AISMessage module for more information on the fields of the AIS messages.

# Example for printing the positions for each trajectory
for ship in all_ships.values():
    for track in ship.tracks:
        for msg in track:
            print(msg.lat, msg.lon)

The trajectories extracted via the extract_all() method are not interpolated by default. To manually interpolate them, you can use the interpolate() method of the TargetShip object.

for ship in all_ships.values():
    ship.interpolate(mode="linear") # or "spline"

Refer also to the function documentation for further details.

Refining trajectories using the Inspector class

Once the TargetShips with its trajectories are extracted, PyTSA provides a flexible interface for refining the trajectories using the Inspector class. The output of the Inspector is two dictionaries [accepted,rejected], of type dict[MMSI,TargetShip]. The first dictionary contains the TargetShip objects that passed the inspection, while the second dictionary contains the TargetShip objects that failed the inspection.

Note: It is possible that the same MMSI is present in both dictionaries. If so, the TargetShip object in the rejected dictionary will contain only rejected trajectories, while the TargetShip object in the accepted dictionary will contain only accepted trajectories.

The Inspector works with a set of rules, that must be combined into a Recipe object, which is then passed to the Inspector object.

Before we show an example, let's explain the concept of rules and recipes:

Rules

A rule is a function following the signature rule(track: Track) -> bool. It takes a single Track object as input and returns a boolean value. Rules are set to act as a negative filter, meaning that if a rule returns True, the corresponding Track will be removed from the TargetShip object.

It is possible for rules to have more than one argument, like rule(track: Track, *args, **kwargs) -> bool, however, for constructing a recipe, all other arguments must be pre-set, for example by using a lambda function, or the functools.partial function.

A simple rule that removes all tracks with less than 10 AIS messages would look like this:

from pytsa import Track

def track_too_short(track: Track) -> bool:
    return len(track) < 10

A rule filtering trajectories whose latitude is outside given bounds could look like this:

def lat_outside_bounds(track: Track, latmin: float, latmax: float) -> bool:
    return any([msg.lat < latmin or msg.lat > latmax for msg in track])

Feel free to define your own rules, or use the ones provided in the pytsa.trajectories.rules module.

Recipes

A recipe is a list of rules that are combined into a single function using the Recipe class.

from pytsa import Recipe
from fuctools import partial

# Create a recipe with the 
# two rules defined above.
recipe = Recipe(
    track_too_short,
    partial(lat_outside_bounds, latmin=52.2, latmax=56.9)
)

Applying the recipe to the Inspector

Once the recipe is created, it can be passed to the Inspector object, which will then apply the recipe to the TargetShip objects, filtering out the trajectories that do not pass the rules.

from pytsa import Inspector

inspector = Inspector(all_ships, recipe)
accepted, rejected = inspector.inspect()

Visualizing AIS data

This module provides various functions for visualizing AIS data. Currently, there exist two groups of functions:

  • Functions for visualizing the empirical distribution functions used in the split-point approach in the original paper. These functions are located in the pytsa.visualization.ecdf module. They are intended to both make the results of the split-point approach more transparent and to provide a tool for adapting the split-point approach to different datasets.

  • Miscellaneous functions can be found in the pytsa.visualization.misc module. Currently, the following functionalities are provided:

    • Plotting the trajectories on a map
    • Comparing trajectories based on different σ_ssd ranges (see Figure 12 in the original paper)
    • Plotting all trajectories as a heatmap
    • Generating a pixel map of average smoothness as a function of the number of messages in a trajectory and the spatial standard deviation of the trajectory (Figure 14 in the paper)

Issues and Contributing

Currently, this project is developed by a single person and is therefore not thoroughly tested.

If you encounter any issues or have any suggestions for improvements, you are invited to open an issue or a pull request.

Citation

If you use this module in your research, please consider citing this repository as follows:

@misc{pytsa2024,
  author = {Paulig, Niklas},
  title = {{PyTSA}: Python Trajectory Splitting and Assessment Agent for AIS Data},
  year = {2024},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/nikpau/pytsa}},
}

Appendix

Split-point procedure

The split-point procedure takes place in the pytsa.tsea.split module. Its main function, is_split_point(), will be called on every pair of AIS messages in the dataset. The function returns a boolean value, indicating whether the pair of messages is a split point or not.

In case you want to adapt the split-point procedure to your dataset, you can use the pytsa.tsea.split module as a starting point.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pytsa_ais-2.3.7-cp312-none-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

pytsa_ais-2.3.7-cp312-cp312-manylinux_2_34_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.34+ x86-64

pytsa_ais-2.3.7-cp312-cp312-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pytsa_ais-2.3.7-cp311-none-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

pytsa_ais-2.3.7-cp311-cp311-manylinux_2_34_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.34+ x86-64

pytsa_ais-2.3.7-cp311-cp311-manylinux_2_28_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

pytsa_ais-2.3.7-cp311-cp311-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pytsa_ais-2.3.7-cp310-none-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

pytsa_ais-2.3.7-cp310-cp310-manylinux_2_34_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.34+ x86-64

pytsa_ais-2.3.7-cp310-cp310-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

File details

Details for the file pytsa_ais-2.3.7-cp312-none-win_amd64.whl.

File metadata

  • Download URL: pytsa_ais-2.3.7-cp312-none-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for pytsa_ais-2.3.7-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 4a31b25f1048a70c0e223dd4dc3567181ddeb3125fed481bf5ea85188a870d1c
MD5 8ecbc96e734308bfdd1bce73c065779b
BLAKE2b-256 be1d006402256d3b629cfd082ff877edf87c74320367082d7fa7b7ab5dafafef

See more details on using hashes here.

File details

Details for the file pytsa_ais-2.3.7-cp312-cp312-manylinux_2_34_x86_64.whl.

File metadata

File hashes

Hashes for pytsa_ais-2.3.7-cp312-cp312-manylinux_2_34_x86_64.whl
Algorithm Hash digest
SHA256 cb71fee8b90c36e3be5426e5a06570c7c0df30c3b1cd4ec3f4e112941bc3c95d
MD5 696cd9fda2040cd0f7bb3c5ddaa3b9a0
BLAKE2b-256 b4c405c707c16d9db64a7a1509c20f93c6af18202273e3e0c1a800e84a9cfde9

See more details on using hashes here.

File details

Details for the file pytsa_ais-2.3.7-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytsa_ais-2.3.7-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fb886ce19dc4349f7da507cf67789d8bbb3589adf439b53744d0f49dc51dde70
MD5 f909c9341dc2953168a653c621183738
BLAKE2b-256 5fb27945bbff839bb6342eacb5da99225f129f3c322483117d4f67a31e3371d3

See more details on using hashes here.

File details

Details for the file pytsa_ais-2.3.7-cp311-none-win_amd64.whl.

File metadata

  • Download URL: pytsa_ais-2.3.7-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for pytsa_ais-2.3.7-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 19b8ef552ade75540bf5048460a0fa675ebc74716c8de5db04a092799d3ca7c7
MD5 968aa8cbf225413074ace9e6c5c303b7
BLAKE2b-256 db0e2741dd392a6ef83fccfd927b0eda9ffae7840e148efae32a0175b5f82340

See more details on using hashes here.

File details

Details for the file pytsa_ais-2.3.7-cp311-cp311-manylinux_2_34_x86_64.whl.

File metadata

File hashes

Hashes for pytsa_ais-2.3.7-cp311-cp311-manylinux_2_34_x86_64.whl
Algorithm Hash digest
SHA256 e45f982ec0f3641f91659f416b6b9c34bd8a607bb554d9f54913bd8c53a51cba
MD5 9467d8d9298474cbaa81fbc110253be9
BLAKE2b-256 504c47b3541574f0a5618524304400585a835c60eda194e4a4c0805e003a0004

See more details on using hashes here.

File details

Details for the file pytsa_ais-2.3.7-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pytsa_ais-2.3.7-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 66bae6df1bb19b5673e0a7ab6ebd1c1410f5aebce8850b2a47d9a8cf6fca485b
MD5 d9ef708b65cc2b8744d244598a8cee05
BLAKE2b-256 69add2142794ac700b47c1fddd6c4803fb15b3e8db0fd40377820bd2ebc52c45

See more details on using hashes here.

File details

Details for the file pytsa_ais-2.3.7-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytsa_ais-2.3.7-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d5a5632051c29ea83c9a86d9c47a713e35255bf8d3d2966084ec2ea7571045d2
MD5 9fe12b9e1e9e9ceadedf3b8f08295c35
BLAKE2b-256 2f77b09ae978fbec1edca516c620217d64a82e7cdef9ed6a4140a1c6490d540b

See more details on using hashes here.

File details

Details for the file pytsa_ais-2.3.7-cp310-none-win_amd64.whl.

File metadata

  • Download URL: pytsa_ais-2.3.7-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for pytsa_ais-2.3.7-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 adf68d1d8f5a8688de963264fcbbb626cd3d0e277f92d094d6d47ba782f70d2a
MD5 11185e6021c40b4bdcb7bc954b8727a3
BLAKE2b-256 039d9c75af73e0b55079f64b1b93099b20672da78a6255bab908623c4e6fa758

See more details on using hashes here.

File details

Details for the file pytsa_ais-2.3.7-cp310-cp310-manylinux_2_34_x86_64.whl.

File metadata

File hashes

Hashes for pytsa_ais-2.3.7-cp310-cp310-manylinux_2_34_x86_64.whl
Algorithm Hash digest
SHA256 174b509e2750669231cfb2864f93afa2f0ec374855ac53e100afb0e7b46062c9
MD5 49845de5b9206ec40487433317511495
BLAKE2b-256 1a0d176e32f032782e1ac206b74f06e20ac4f9e6f023816787e2d313264a3acf

See more details on using hashes here.

File details

Details for the file pytsa_ais-2.3.7-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytsa_ais-2.3.7-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 441d59a2c77e6e6ea73ffe0c1010c083eeb3f7e94e929bf6084e64038bfd2936
MD5 fe8401ac4000c8c9c36a4afa88a09366
BLAKE2b-256 0f02d25a50a5472e0adc02ae8e23f763433ce4221e73582ed4689129586892f0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page