Skip to main content

Toolbox for extracting trajectories and monitoring vessels from raw AIS records.

Project description

Python Trajectory Search Agent (PyTSA) for raw AIS records

This module provides a set of functionalities around Automatic Identification System (AIS) messages, such as

  • Decoding raw AIS messages
  • Extracting clean, practical and interpolated trajectories from the data, based on various (also user-defined) filters.
  • Providing an easy-to-use interface for observing target ships and their state around a given time and position.

Motivation

Simulation studies in maritime contexts often lack an easy-to-use model for vessel traffic extraction around a simulated vessel, as the large amounts of AIS records make it challenging and time-consuming to pinpoint the exact vessels to be monitored.

Also, for validating path-following, or collision avoidance systems, it is beneficial to use real-world trajectories, as they often provide a larger variety of movement patterns than simulated trajectories. However, the exact process of extracting the relevant information from the raw AIS data is often not sufficiently documented, thus making it difficult to reproduce the results.

Therefore, this module aims to provide a unified, open-source solution for extracting relevant trajectories from raw AIS data, as well as providing an easy-to-use interface for observing target ships around a given position and time.

Installation

Install the package via pip:

$ pip install pytsa-ais

Usage

Raw AIS data

One file of raw AIS records must only contain dynamic AIS messages (Types 1,2,3 and 18) or static AIS messages (Type 5). A combination of both is not supported. The data must be provided in the .csv format and must be named YYYY_MM_DD.csv. Other file names are not supported.

This is done to avoid extra-day sorting of the data, which would be necessary if the data was not sorted by date. Intra-day sorting is done regardless of the file name.

Individual files must contain the following columns:

  • timestamp: ISO 8601 parseable date format (e.g. "2021-07-03T00:00:00.000Z")
  • message_id: AIS message type (1,2,3,5,18)

For dynamic AIS messages (Types 1,2,3,18) additionally

  • raw_message: For messages of type 1,2,3,18, the raw message consists of a single AIVDM sentence.

For static AIS messages (Type 5) additionally:

  • raw_message1: First AIVDM sentence
  • raw_message2: Second AIVDM sentence

Example Table for dynamic AIS messages

timestamp message_id raw_message
2021-07-03T00:00:00.000Z 1 "!ABVDM,1,1,,B,177PhT001iPWhwJPsK=9DoQH0<>i,0*7C"

Example Table for static AIS messages

timestamp message_id raw_message1 raw_message2
2021-07-03T00:00:00.000Z 5 "!ABVDM,2,1,5,A,53aQ5aD2;PAQ0@8l000lE9LD8u8L00000000001??H<886?80@@C1F0CQ4R@,0*35" "!ABVDM,2,2,5,A,@0000000000,2*5A"

For more information on the AIS message structure, see here.

Decoding AIS messages

Once your raw AIS data is in the correct format, you can decode the AIS messages by calling the decode() function. The function takes as arguments the path to a directory containing the raw AIS data, as well as the path to the output directory. The function will then decode all .csv files in the input directory and save the decoded data to the output directory under the same file name.

from pytsa import decode

decode(
    source = "path/to/raw_dir",
    dest = "path/to/decoded_dir",
    njobs = 1
)

For decoding AIS messages, you can choose between single-processing and multi-processing decoding. The multi-processing decoding is recommended for large datasets containing multiple files, as it is significantly faster than single-process decoding. However, during decoding, the files are loaded into memory in their entirety, which may lead to memory issues for large datasets or a large number of jobs. Therefore, it is recommended to use single-processing decoding for smaller datasets or if you encounter memory issues. Parallel decoding may also not be avialable on Windows systems (due to the lack of testing on Windows systems, this is not guaranteed, sorry...)

Decoded AIS data

In case you already have decoded AIS messages, you have to make sure, that the fields of your .csv file at least partially match Msg12318Columns and Msg5Columns at pytsa/decode/filedescriptor.py.

In case you have a different data structure, you can either adapt the Msg12318Columns and Msg5Columns classes, or you can adapt the column names of your .csv file to match the column names of the Msg12318Columns and Msg5Columns classes.

Using the SearchAgent for extracting target ships

The central object of the module is the SearchAgent class, which provides an easy-to-use interface for extracting target ships around a given position and time.

Possible applications include:

  • Tracking traffic around a simulated route
  • Monitoring traffic around a fixed location
  • Extracting trajectories

The Search Agent must be instantiated with three components: Its BoundingBox, msg12318files and msg5files:

  • BoundingBox: Reference frame containing the spatial extent of the searchable area in degrees of latitude and longitude.

  • msg12318files: File path to a .csv file containing decoded dynamic AIS messages (Types 1,2,3 and 18 only) to consider for the search procedure. See the next section for details on the data structure.

  • msg5files: File path to the corresponding .csv file containing decoded static AIS messages (message type 5)

Example instantiation for a small area in the North Sea:

import pytsa
from pathlib import Path

# Lat-Lon Box with [lat,lon, SOG, COG] outputs
frame = pytsa.BoundingBox(
    LATMIN = 52.2, # [°N]
    LATMAX = 56.9, # [°N]
    LONMIN = 6.3,  # [°E]
    LONMAX = 9.5,  # [°E]
)

dynamic_data = Path("/path/to/dynamic.csv")
static_data = Path("/path/to/static.csv")

search_agent = pytsa.SearchAgent(
    msg12318file = dynamic_data,
    msg5file = static_data
    frame = frame
)

Monitoring vessel traffic around a given position

To commence a search for ships around a given location, it is mandatory to use a TimePosition object to store the position and time at which the search shall be commenced simultaneously. Example:

from pytsa import TimePosition

tpos = TimePosition(
    timestamp="2021-07-03T12:03:00.000Z",
    lat=52.245,
    lon=9.878
)

After defining a TimePosition, a search can be commenced by freezing the search agent at the given position and time

target_ships = search_agent.freeze(tpos)

yielding a list of TargetShip objects (see pytsa/targetship.py for more information).

By default, the resulting TargetShip objects used linear interpolation to estimate the current position, speed and course of the target ships. If instead, cubic spline interpolation is desired, the interpolation option can be set to spline. Additionally, the search_radius can be set to a custom value in nautical miles.

target_ships = search_agent.freeze(
    tpos, 
    interpolation="spline", 
    search_radius=5 # [nm]
)

To get the current Latitude, Longitude, SOG, COG for each TargetShip object at the provided timestamp, the observe() method can be used, returning a numpy array with the current position, speed and course.

for ship in target_ships:
    ship.observe()

# Example output for one ship
# 
# Interpolated COG ---------------
# Interpolated SOG -----------    |
# Interpolated Longitude-|   |    |
# Interpolated Latitude  |   |    |
#                v       v   v    v
>>> np.array([52.232,9.847,12.34,223.4])

Full example

import pytsa
from pathlib import Path

# Global geographic search area.
# Outside these bounds, no search will be commenced
frame = pytsa.BoundingBox(
    LATMIN = 52.2, # [°N]
    LATMAX = 56.9, # [°N]
    LONMIN = 6.3,  # [°E]
    LONMAX = 9.5,  # [°E]
)

# File containing AIS messages
dynamic_data = Path("/path/to/dynamic.csv")
static_data = Path("/path/to/static.csv")

# Instantiate the search agent with the source file 
# and the search area
search_agent = pytsa.SearchAgent(
    msg12318file = dynamic_data,
    msg5file = static_data
    frame = frame
)

# Provide a position and time for which the search
# will be carried out
tpos = pytsa.TimePosition(
    timestamp="2021-07-03T12:03:00.000Z",
    lat=52.245,
    lon=9.878
)

# Search for TargetVessels with 
# default settings: 
#   Linear interpolation, 
#   20 nm search radius
target_ships = search_agent.freeze(tpos)

# Extract the current position, speed and
# course for all found target vessels.
for ship in target_ships:
    ship.observe()

# Example output for one ship
>>> np.array([52.232,9.847,12.34,223.4])

Extracting trajectories

If instead of observing target ships around a given position, you want to extract trajectories from the data, you can use the SearchAgent.extract_all().

By default, the extract_all() method walks through the entire dataset and extracts all trajectories that are within the search area utilizing the split-point approach from Section 4 in our original paper. The method returns a dictionary with the MMSI as keys and the corresponding TargetShip objects as values.

all_ships = search_agent.extract_all()

To skip the split-point approach you can set the skip_tsplit parameter to True. This will result in TargetShip objects that only contain a single trajectory, which is the raw, time-ordered set of AIS messages for the given MMSI.

all_ships = search_agent.extract_all(skip_tsplit=True)

The extract_all() method used 4-core parallel processing by default. This can be adjusted by setting the njobs parameter to a custom value. Note, that high njobs values may lead to a slowdown due to the overhead of splitting the data into chunks and reassembling the results.

The trajectories of each TargetShip object can be accessed by the tracks attribute, which is of type list[Track]. Each Track within the tracks list contains the AIS messages for a single trajectory. See the pytsa.structs.AISMessage module for more information on the fields of the AIS messages.

# Example for printing the positions for each trajectory
for ship in all_ships.values():
    for track in ship.tracks:
        for msg in track:
            print(msg.lat, msg.lon)

The trajectories extracted via the extract_all() method are not interpolated by default. To manually interpolate them, you can use the interpolate() method of the TargetShip object.

for ship in all_ships.values():
    ship.interpolate(mode="linear") # or "spline"

Refer also to the function documentation for further details.

Refining trajectories using the Inspector class

Once the TargetShips with its trajectories are extracted, PyTSA provides a flexible interface for refining the trajectories using the Inspector class. The output of the Inspector is two dictionaries [accepted,rejected], of type dict[MMSI,TargetShip]. The first dictionary contains the TargetShip objects that passed the inspection, while the second dictionary contains the TargetShip objects that failed the inspection.

Note: It is possible that the same MMSI is present in both dictionaries. If so, the TargetShip object in the rejected dictionary will contain only rejected trajectories, while the TargetShip object in the accepted dictionary will contain only accepted trajectories.

The Inspector works with a set of rules, that must be combined into a Recipe object, which is then passed to the Inspector object.

Before we show an example, let's explain the concept of rules and recipes:

Rules

A rule is a function following the signature rule(track: Track) -> bool. It takes a single Track object as input and returns a boolean value. Rules are set to act as a negative filter, meaning that if a rule returns True, the corresponding Track will be removed from the TargetShip object.

It is possible for rules to have more than one argument, like rule(track: Track, *args, **kwargs) -> bool, however, for constructing a recipe, all other arguments must be pre-set, for example by using a lambda function, or the functools.partial function.

A simple rule that removes all tracks with less than 10 AIS messages would look like this:

from pytsa import Track

def track_too_short(track: Track) -> bool:
    return len(track) < 10

A rule filtering trajectories whose latitude is outside given bounds could look like this:

def lat_outside_bounds(track: Track, latmin: float, latmax: float) -> bool:
    return any([msg.lat < latmin or msg.lat > latmax for msg in track])

Feel free to define your own rules, or use the ones provided in the pytsa.trajectories.rules module.

Recipes

A recipe is a list of rules that are combined into a single function using the Recipe class.

from pytsa import Recipe
from fuctools import partial

# Create a recipe with the 
# two rules defined above.
recipe = Recipe(
    track_too_short,
    partial(lat_outside_bounds, latmin=52.2, latmax=56.9)
)

Applying the recipe to the Inspector

Once the recipe is created, it can be passed to the Inspector object, which will then apply the recipe to the TargetShip objects, filtering out the trajectories that do not pass the rules.

from pytsa import Inspector

inspector = Inspector(all_ships, recipe)
accepted, rejected = inspector.inspect()

Visualizing AIS data

This module provides various functions for visualizing AIS data. Currently, there exist two groups of functions:

  • Functions for visualizing the empirical distribution functions used in the split-point approach in the original paper. These functions are located in the pytsa.visualization.ecdf module. They are intended to both make the results of the split-point approach more transparent and to provide a tool for adapting the split-point approach to different datasets.

  • Miscellaneous functions can be found in the pytsa.visualization.misc module. Currently, the following functionalities are provided:

    • Plotting the trajectories on a map
    • Comparing trajectories based on different σ_ssd ranges (see Figure 12 in the original paper)
    • Plotting all trajectories as a heatmap
    • Generating a pixel map of average smoothness as a function of the number of messages in a trajectory and the spatial standard deviation of the trajectory (Figure 14 in the paper)

Issues and Contributing

Currently, this project is developed by a single person and is therefore not thoroughly tested.

If you encounter any issues or have any suggestions for improvements, you are invited to open an issue or a pull request.

Citation

If you use this module in your research, please consider citing this repository as follows:

@misc{pytsa2024,
  author = {Paulig, Niklas},
  title = {{PyTSA}: Python Trajectory Splitting and Assessment Agent for AIS Data},
  year = {2024},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/nikpau/pytsa}},
}

Appendix

Split-point procedure

The split-point procedure takes place in the pytsa.tsea.split module. Its main function, is_split_point(), will be called on every pair of AIS messages in the dataset. The function returns a boolean value, indicating whether the pair of messages is a split point or not.

In case you want to adapt the split-point procedure to your dataset, you can use the pytsa.tsea.split module as a starting point.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pytsa_ais-2.3.8-cp312-none-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

pytsa_ais-2.3.8-cp312-cp312-manylinux_2_34_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.34+ x86-64

pytsa_ais-2.3.8-cp312-cp312-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pytsa_ais-2.3.8-cp311-none-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

pytsa_ais-2.3.8-cp311-cp311-manylinux_2_34_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.34+ x86-64

pytsa_ais-2.3.8-cp311-cp311-manylinux_2_28_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

pytsa_ais-2.3.8-cp311-cp311-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pytsa_ais-2.3.8-cp310-none-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

pytsa_ais-2.3.8-cp310-cp310-manylinux_2_34_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.34+ x86-64

pytsa_ais-2.3.8-cp310-cp310-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

File details

Details for the file pytsa_ais-2.3.8-cp312-none-win_amd64.whl.

File metadata

  • Download URL: pytsa_ais-2.3.8-cp312-none-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for pytsa_ais-2.3.8-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 d9d14b1fc88497c7fd2639ea01362b1f4b5edf8c7355094e9fab1023781dd6cf
MD5 5d0ed66388917ba1fb48f7ae2c66b45e
BLAKE2b-256 c0c19a5fd5e774304f1be909190702249163096039f37fce0e7a951a2319fa10

See more details on using hashes here.

File details

Details for the file pytsa_ais-2.3.8-cp312-cp312-manylinux_2_34_x86_64.whl.

File metadata

File hashes

Hashes for pytsa_ais-2.3.8-cp312-cp312-manylinux_2_34_x86_64.whl
Algorithm Hash digest
SHA256 bc979f5abb04e0bb59e8fc1547092ca216113a17df6a1aa228f15f60535d5902
MD5 822100aa24944fda97697f01a4369d17
BLAKE2b-256 83c653535219203aa28e4bcc506ff3c852a335d8ad4c38f5f95cd688da71aeff

See more details on using hashes here.

File details

Details for the file pytsa_ais-2.3.8-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytsa_ais-2.3.8-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 93e1cc37545d62996a1e7851b7681581139344f08c2848e33706a6f9aa9f00f3
MD5 f148f5c80dfdba5b92b36bfd8e611746
BLAKE2b-256 85209d335b62c7a1402fe8af269383c7026009fbb67c66d6ad2bbc18da05f735

See more details on using hashes here.

File details

Details for the file pytsa_ais-2.3.8-cp311-none-win_amd64.whl.

File metadata

  • Download URL: pytsa_ais-2.3.8-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for pytsa_ais-2.3.8-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 26058c3cd8091830a8b202ed7354489c79a6d8111d8d5ae5fc3b3fff04b48ab2
MD5 fe2497ea3762e24a0cce632f3810b9d8
BLAKE2b-256 3241712371824df9dd931fc995e5f7dddcdd75417bcca0fdaee2a73ce443f16b

See more details on using hashes here.

File details

Details for the file pytsa_ais-2.3.8-cp311-cp311-manylinux_2_34_x86_64.whl.

File metadata

File hashes

Hashes for pytsa_ais-2.3.8-cp311-cp311-manylinux_2_34_x86_64.whl
Algorithm Hash digest
SHA256 ad1e17d36f3d36d7171dd5e72af64d29c4d97d335fd3d9b33c2a8e71eadad668
MD5 55dd9a8bc64c2af70005ed9df65d949d
BLAKE2b-256 80cb26a840c5e7d3ec5504a9bfa5acbcb5db66b9b979ebab51956bffb04b5621

See more details on using hashes here.

File details

Details for the file pytsa_ais-2.3.8-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pytsa_ais-2.3.8-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b77490f68fe0eece25d83779b49d00649128d43fd07b72515345c34434061a56
MD5 f9f38204eb8a330212f1b1c35ff9274a
BLAKE2b-256 1c810e9f2b3cdd506f7a240e21945c8dc6da23b8d9e1a331dfd39f152e1c10c8

See more details on using hashes here.

File details

Details for the file pytsa_ais-2.3.8-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytsa_ais-2.3.8-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b65984d9bd67d3997fabc483bb63c01b36045895434588e685ebe0ec82c6e55e
MD5 ff5c0f58f078c6411db1616abba42664
BLAKE2b-256 d2cd72178bc9cb71eb6304ba2e7d14b974da281e6510172617a9adc80f9178ee

See more details on using hashes here.

File details

Details for the file pytsa_ais-2.3.8-cp310-none-win_amd64.whl.

File metadata

  • Download URL: pytsa_ais-2.3.8-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for pytsa_ais-2.3.8-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 dc4f2a82b390b23f1521056cc1faa60c000239ae453fee8120cba55ec150b536
MD5 3081fcaba7e9444033e965eb63e38799
BLAKE2b-256 f2b82a2e8197ffb46a5f2e37bf3355e8c5f8d211b62efa27115b80df8fce2990

See more details on using hashes here.

File details

Details for the file pytsa_ais-2.3.8-cp310-cp310-manylinux_2_34_x86_64.whl.

File metadata

File hashes

Hashes for pytsa_ais-2.3.8-cp310-cp310-manylinux_2_34_x86_64.whl
Algorithm Hash digest
SHA256 ed8ce31c6802bfd434a79787be750d204d5610542868b819785d4d27a8023236
MD5 dd99c6682ac813b4aa42157d0d60c4ec
BLAKE2b-256 665985f184736067b6f622ca21054938201d40927f182e4d01d2df6173a9fe08

See more details on using hashes here.

File details

Details for the file pytsa_ais-2.3.8-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytsa_ais-2.3.8-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dce6d68e879685b88690d761f1021403fd7ec10c38e5c0d5eb1164cc53ec2990
MD5 6cd195c9e72045f43a399b96e6d52a16
BLAKE2b-256 58f0d0281557102534bbd4a9e22810d724c904dc9120e6c8e3a917f4738fb911

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page