Initial Release.
Project description
This code is to solve traveling salesman problem by using simulated annealing meta heuristic.
```
import numpy
import pytspsa
solver = pytspsa.Tsp_sa()
c = [
[0, 0],
[0, 1],
[0, 2],
[0, 3]
]
c = numpy.asarray(c, dtype=numpy.float32)
solver.set_num_nodes(4)
solver.add_by_coordinates(c)
solver.set_t_v_factor(4.0)
# solver.sa() or sa_auto_parameter() will solve the problem.
solver.sa_auto_parameter(12)
# getting result
solution = solver.getBestSolution()
print('Length={}'.format(solution.getlength()))
print('Path= {}'.format(solution.getRoute()))
```
See github page.
```
import numpy
import pytspsa
solver = pytspsa.Tsp_sa()
c = [
[0, 0],
[0, 1],
[0, 2],
[0, 3]
]
c = numpy.asarray(c, dtype=numpy.float32)
solver.set_num_nodes(4)
solver.add_by_coordinates(c)
solver.set_t_v_factor(4.0)
# solver.sa() or sa_auto_parameter() will solve the problem.
solver.sa_auto_parameter(12)
# getting result
solution = solver.getBestSolution()
print('Length={}'.format(solution.getlength()))
print('Path= {}'.format(solution.getRoute()))
```
See github page.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pytspsa-0.1.14.tar.gz
(18.6 kB
view details)
File details
Details for the file pytspsa-0.1.14.tar.gz
.
File metadata
- Download URL: pytspsa-0.1.14.tar.gz
- Upload date:
- Size: 18.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
1e10b6313ed8e98f1bf639d34aa7792d9689b22a4dd9c14990ee428fe24ad4ef
|
|
MD5 |
ef6c123358d2cc083aab50849f931273
|
|
BLAKE2b-256 |
ba1405e340c9e86e872d10ef41ff7d849bc25a72b3d9e52feb94ffee5eb9ca2c
|