Skip to main content

A library for efficiently loading data into Python

Project description

pytubes
=======

A library for loading data into Python

.. toctree::
:caption: Contents
:maxdepth: 2
:name: mastertoc

tubes
detail

Simple Example
--------------

>>> from tubes import Each
>>> import glob
>>> tube = (Each(glob.glob("*.json")) # Iterate over some filenames
.read_files() # Read each file, chunk by chunk
.split() # Split the file, line-by-line
.json() # parse json
.get('country_code', 'null')) # extract field named 'country_code'
>>> set(tube) # collect results in a set
{'A1', 'AD', 'AE', 'AF', 'AG', 'AL', 'AM', 'AO', 'AP', ...}

More Complex Example
--------------------

>>> from tubes import Each
>>> import glob

>>> x = (Each(glob.glob('*.jsonz'))
.map_files()
.gunzip()
.split(b'\n')
.json()
.enumerate()
.skip_unless(lambda x: x.slot(1).get('country_code', '""').to(str).equals('GB'))
.multi(lambda x: (
x.slot(0),
x.slot(1).get('timestamp', 'null'),
x.slot(1).get('country_code', 'null'),
x.slot(1).get('url', 'null'),
x.slot(1).get('file', '{}').get('filename', 'null'),
x.slot(1).get('file', '{}').get('project'),
x.slot(1).get('details', '{}').get('installer', '{}').get('name', 'null'),
x.slot(1).get('details', '{}').get('python', 'null'),
x.slot(1).get('details', '{}').get('system', 'null'),
x.slot(1).get('details', '{}').get('system', '{}').get('name', 'null'),
x.slot(1).get('details', '{}').get('cpu', 'null'),
x.slot(1).get('details', '{}').get('distro', '{}').get('libc', '{}').get('lib', 'null'),
x.slot(1).get('details', '{}').get('distro', '{}').get('libc', '{}').get('version', 'null'),
))
)
>>> print(list(x)[-3])
(15,612,767, '2017-12-14 09:33:31 UTC', 'GB', '/packages/29/9b/25ef61e948321296f029f53c9f67cc2b54e224db509eb67ce17e0df6044a/certifi-2017.11.5-py2.py3-none-any.whl', 'certifi-2017.11.5-py2.py3-none-any.whl', 'certifi', 'pip', '2.7.5', {'name': 'Linux', 'release': '2.6.32-696.10.3.el6.x86_64'}, 'Linux', 'x86_64', 'glibc', '2.17')


What is it?
-----------

Pytubes is a library that optimizes loading dataset into memory.

At it's core is a set of specialized c++ classes that can be chained together
to load and manipulate data using a standard iterator pattern. Around this
there is a cython extension module that makes defining and configuring a tube
simple and straight-forward.

A lot of the cost of loading data using pure python is typically centered around
function call overhead and allocating/copying object data.

Pytubes tackles these bottlenecks by using a number of strategies:

- iterator hot-loops are pure c++ function calls
- zero-copy views onto array data
- strict epoch-based lifetime rules avoid reference counting or GC during iteration
- where possible, zero allocations during iteration
- avoiding creating python objects where possible

These optimizations lead to significant performance improvements over pure python,
despite offering complex loading functionality.

Usage
-----

Usage is very simple:

#. Import ``tubes``
#. create an input tube (currently either: :class:`tube.Each` or :class:`tube.Count`) to get some data into the tube
#. continue to methods on the input tube to build up each step of the processing (e.g. ``read_files().split().json()``...)
#. Iterate over the tube to generate the data, by either:

- Calling ``list(tube)``
- looping over it in a for-loop: ``for item in tube:``
- or: Calling ``x = iter(tube)``, and then ``next(x)`` repeatedly.


Installation
------------

**From PyPi**::

$ pip install pytubes

**From source**::

$ pip install -r build_requirements.txt
$ cd pyx
$ python setup.py install

API
---

All tube methods are documented here: :ref:`api`

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytubes-0.5.5.tar.gz (487.8 kB view hashes)

Uploaded Source

Built Distributions

pytubes-0.5.5-cp36-cp36m-manylinux1_x86_64.whl (1.5 MB view hashes)

Uploaded CPython 3.6m

pytubes-0.5.5-cp36-cp36m-macosx_10_13_x86_64.whl (324.0 kB view hashes)

Uploaded CPython 3.6m macOS 10.13+ x86-64

pytubes-0.5.5-cp35-cp35m-manylinux1_x86_64.whl (1.5 MB view hashes)

Uploaded CPython 3.5m

pytubes-0.5.5-cp35-cp35m-macosx_10_13_x86_64.whl (325.4 kB view hashes)

Uploaded CPython 3.5m macOS 10.13+ x86-64

pytubes-0.5.5-cp34-cp34m-manylinux1_x86_64.whl (1.5 MB view hashes)

Uploaded CPython 3.4m

pytubes-0.5.5-cp34-cp34m-macosx_10_13_x86_64.whl (337.0 kB view hashes)

Uploaded CPython 3.4m macOS 10.13+ x86-64

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page