Skip to main content

data wrangling for lists of tuples and dictionaries

Project description

https://img.shields.io/pypi/v/pytups.svg https://img.shields.io/pypi/l/pytups.svg https://img.shields.io/pypi/pyversions/pytups.svg https://travis-ci.org/pchtsp/pytups.svg?branch=master

What and why

The idea is to allow sparse operations to be executed in matrix data.

I grew used to the chained operations in R’s tidyverse packages or, although not a great fan myself, python’s pandas . I find myself using dictionary and list comprehensions all the time to pass from one data format to the other efficiently. But after doing it for the Nth time, I thought of automaticing it.

In my case, it helps me construct optimisation models with PuLP. I see other possible uses not related to OR.

I’ve implemented some additional methods to regular dictionaries, lists and sets to come up with interesting methods that somewhat quickly pass from one to the other and help with data wrangling.

In order for the operations to make any sense, the assumption that is done is that whatever you are using has the same ‘structure’. For example, if you a have a list of tuples: every element of the list is a tuple with the same size and the Nth element of the tuple has the same type, e.g. [(1, 'red', 'b', '2018-01'), (10, 'ccc', 'ttt', 'ff')]. Note that both tuples have four elements and the first one is a number, not a string. We do not check that this is consistent.

They’re made to always return a new object, so no “in-place” editing, hopefully.

Right now there are three classes to use: dictionaries, tuple lists and ordered sets.

Python versions

Python 3.8 and up.

Quick example

We index a tuple list according to some index positions.:

import pytups as pt
some_list_of_tuples = [('a', 'b', 'c', 1), ('a', 'b', 'c', 2), ('a', 'b', 'c', 45)]
tp_list = pt.TupList(some_list_of_tuples)
tp_list.to_dict(result_col=3)
# {('a', 'b', 'c'): [1, 2, 45]}
tp_list.to_dict(result_col=3).to_dictdict()
# {'a': {'b': {'c': [1, 2, 45]}}}
tp_list.to_dict(result_col=[2, 3])
# {('a', 'b'): [('c', 1), ('c', 2), ('c', 45)]}

We do some operations on dictionaries with common keys.:

import pytups as pt
some_dict = pt.SuperDict(a=1, b=2, c=3, d=5)
some_other_dict = pt.SuperDict(a=5, b=7, c=1)
some_other_dict + some_dict
# {'a': 6, 'b': 9, 'c': 4}
some_other_dict.vapply(lambda v: v**2)
# {'a': 25, 'b': 49, 'c': 1}
some_other_dict.kvapply(lambda k, v: v/some_dict[k])
# {'a': 5.0, 'b': 3.5, 'c': 0.3333333333333333}

Installing

pip install pytups

or, for the development version:

pip install https://github.com/pchtsp/pytups/archive/master.zip

Testing

Run the command:

python -m unittest discover -s tests

if the output says OK, all tests were passed.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytups-0.88.1.tar.gz (19.5 kB view details)

Uploaded Source

Built Distribution

pytups-0.88.1-py3-none-any.whl (14.6 kB view details)

Uploaded Python 3

File details

Details for the file pytups-0.88.1.tar.gz.

File metadata

  • Download URL: pytups-0.88.1.tar.gz
  • Upload date:
  • Size: 19.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pytups-0.88.1.tar.gz
Algorithm Hash digest
SHA256 b1f96fe41337ee65250e71f973fe3b91495a55dab42feebc0ff66ae00af1004a
MD5 49d38187ef9ff1280d78411c5fdce5ca
BLAKE2b-256 c6ac5c4dfd8c2a2c72903df8b4a677b27a7cb59d4919bb9290fc6ca17f7b93cd

See more details on using hashes here.

File details

Details for the file pytups-0.88.1-py3-none-any.whl.

File metadata

  • Download URL: pytups-0.88.1-py3-none-any.whl
  • Upload date:
  • Size: 14.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pytups-0.88.1-py3-none-any.whl
Algorithm Hash digest
SHA256 6b45969212c4c58d6511419c45e2a217abde978f77d4b9aae78b60d2e1958ee5
MD5 1759ef61954d936adc67b257c32419b5
BLAKE2b-256 1238b82dd0b5b57e559b4a6268d6c6000ab2a9a7135bb2d19885e7720c898cad

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page