Skip to main content

data wrangling for lists of tuples and dictionaries

Project description

https://img.shields.io/pypi/v/pytups.svg https://img.shields.io/pypi/l/pytups.svg https://img.shields.io/pypi/pyversions/pytups.svg https://travis-ci.org/pchtsp/pytups.svg?branch=master

What and why

The idea is to allow sparse operations to be executed in matrix data.

I grew used to the chained operations in R’s tidyverse packages or, although not a great fan myself, python’s pandas . I find myself using dictionary and list comprehensions all the time to pass from one data format to the other efficiently. But after doing it for the Nth time, I thought of automaticing it.

In my case, it helps me construct optimisation models with PuLP. I see other possible uses not related to OR.

I’ve implemented some additional methods to regular dictionaries, lists and sets to come up with interesting methods that somewhat quickly pass from one to the other and help with data wrangling.

In order for the operations to make any sense, the assumption that is done is that whatever you are using has the same ‘structure’. For example, if you a have a list of tuples: every element of the list is a tuple with the same size and the Nth element of the tuple has the same type, e.g. [(1, 'red', 'b', '2018-01'), (10, 'ccc', 'ttt', 'ff')]. Note that both tuples have four elements and the first one is a number, not a string. We do not check that this is consistent.

They’re made to always return a new object, so no “in-place” editing, hopefully.

Right now there are three classes to use: dictionaries, tuple lists and ordered sets.

Python versions

Python 3.6 and up.

Quick example

We index a tuple list according to some index positions.:

import pytups as pt
some_list_of_tuples = [('a', 'b', 'c', 1), ('a', 'b', 'c', 2), ('a', 'b', 'c', 45)]
tp_list = pt.TupList(some_list_of_tuples)
tp_list.to_dict(result_col=3)
# {('a', 'b', 'c'): [1, 2, 45]}
tp_list.to_dict(result_col=3).to_dictdict()
# {'a': {'b': {'c': [1, 2, 45]}}}
tp_list.to_dict(result_col=[2, 3])
# {('a', 'b'): [('c', 1), ('c', 2), ('c', 45)]}

We do some operations on dictionaries with common keys.:

import pytups as pt
some_dict = pt.SuperDict(a=1, b=2, c=3, d=5)
some_other_dict = pt.SuperDict(a=5, b=7, c=1)
some_other_dict + some_dict
# {'a': 6, 'b': 9, 'c': 4}
some_other_dict.vapply(lambda v: v**2)
# {'a': 25, 'b': 49, 'c': 1}
some_other_dict.kvapply(lambda k, v: v/some_dict[k])
# {'a': 5.0, 'b': 3.5, 'c': 0.3333333333333333}

Installing

pip install pytups

or, for the development version:

pip install https://github.com/pchtsp/pytups/archive/master.zip

Testing

Run the command:

python -m unittest discover -s tests

if the output says OK, all tests were passed.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytups-0.82.0.tar.gz (11.4 kB view details)

Uploaded Source

Built Distribution

pytups-0.82.0-py3-none-any.whl (12.7 kB view details)

Uploaded Python 3

File details

Details for the file pytups-0.82.0.tar.gz.

File metadata

  • Download URL: pytups-0.82.0.tar.gz
  • Upload date:
  • Size: 11.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for pytups-0.82.0.tar.gz
Algorithm Hash digest
SHA256 52902a2fc02c0947fad302181d88931ca2f2efa2442f06af6a95c3009518cbc5
MD5 8117949c4779f3779f176353c994483b
BLAKE2b-256 2af3edf1223d1ba8a7154be08b3eb2bac52b778cab0dba70f0a547e9b7738a75

See more details on using hashes here.

File details

Details for the file pytups-0.82.0-py3-none-any.whl.

File metadata

  • Download URL: pytups-0.82.0-py3-none-any.whl
  • Upload date:
  • Size: 12.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for pytups-0.82.0-py3-none-any.whl
Algorithm Hash digest
SHA256 f8f7634d44867c0db44940b2ee39932c6a51f6dc4fda2614d6d40a77d5f23630
MD5 9d3dcbc9eddef48f4641992848fb1287
BLAKE2b-256 7d83cdbc510b87609456316c50ae441bef216e8ec1c615a6c6f16dc9bc9ac0d7

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page