Skip to main content

data wrangling for lists of tuples and dictionaries

Project description

https://img.shields.io/pypi/v/pytups.svg https://img.shields.io/pypi/l/pytups.svg https://img.shields.io/pypi/pyversions/pytups.svg https://travis-ci.org/pchtsp/pytups.svg?branch=master

What and why

The idea is to allow sparse operations to be executed in matrix data.

I grew used to the chained operations in R’s tidyverse packages or, although not a great fan myself, python’s pandas . I find myself using dictionary and list comprehensions all the time to pass from one data format to the other efficiently. But after doing it for the Nth time, I thought of automaticing it.

In my case, it helps me construct optimisation models with PuLP. I see other possible uses not related to OR.

I’ve implemented some additional methods to regular dictionaries, lists and sets to come up with interesting methods that somewhat quickly pass from one to the other and help with data wrangling.

In order for the operations to make any sense, the assumption that is done is that whatever you are using has the same ‘structure’. For example, if you a have a list of tuples: every element of the list is a tuple with the same size and the Nth element of the tuple has the same type, e.g. [(1, 'red', 'b', '2018-01'), (10, 'ccc', 'ttt', 'ff')]. Note that both tuples have four elements and the first one is a number, not a string. We do not check that this is consistent.

They’re made to always return a new object, so no “in-place” editing, hopefully.

Right now there are three classes to use: dictionaries, tuple lists and ordered sets.

Python versions

Python 3.6 and up.

Quick example

We index a tuple list according to some index positions.:

import pytups as pt
some_list_of_tuples = [('a', 'b', 'c', 1), ('a', 'b', 'c', 2), ('a', 'b', 'c', 45)]
tp_list = pt.TupList(some_list_of_tuples)
tp_list.to_dict(result_col=3)
# {('a', 'b', 'c'): [1, 2, 45]}
tp_list.to_dict(result_col=3).to_dictdict()
# {'a': {'b': {'c': [1, 2, 45]}}}
tp_list.to_dict(result_col=[2, 3])
# {('a', 'b'): [('c', 1), ('c', 2), ('c', 45)]}

We do some operations on dictionaries with common keys.:

import pytups as pt
some_dict = pt.SuperDict(a=1, b=2, c=3, d=5)
some_other_dict = pt.SuperDict(a=5, b=7, c=1)
some_other_dict + some_dict
# {'a': 6, 'b': 9, 'c': 4}
some_other_dict.vapply(lambda v: v**2)
# {'a': 25, 'b': 49, 'c': 1}
some_other_dict.kvapply(lambda k, v: v/some_dict[k])
# {'a': 5.0, 'b': 3.5, 'c': 0.3333333333333333}

Installing

pip install pytups

or, for the development version:

pip install https://github.com/pchtsp/pytups/archive/master.zip

Testing

Run the command:

python -m unittest discover -s tests

if the output says OK, all tests were passed.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytups-0.87.1.tar.gz (18.8 kB view details)

Uploaded Source

Built Distribution

pytups-0.87.1-py3-none-any.whl (14.3 kB view details)

Uploaded Python 3

File details

Details for the file pytups-0.87.1.tar.gz.

File metadata

  • Download URL: pytups-0.87.1.tar.gz
  • Upload date:
  • Size: 18.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pytups-0.87.1.tar.gz
Algorithm Hash digest
SHA256 ad1213360512db26478f9526078fb011c9780dbd409e3baac6457724e55d205a
MD5 7b14662ee4e7b1bdeef4a31a22115668
BLAKE2b-256 b939693e3e5e481f6200aea7ad0e7a7eaed8dd94792b3138f07f87c03ca0f7bd

See more details on using hashes here.

File details

Details for the file pytups-0.87.1-py3-none-any.whl.

File metadata

  • Download URL: pytups-0.87.1-py3-none-any.whl
  • Upload date:
  • Size: 14.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pytups-0.87.1-py3-none-any.whl
Algorithm Hash digest
SHA256 b8cdc11479af8f371b0e4a65b32128daa2460c912faf98a58d7773ccd1d84a13
MD5 9f611a943d7fd3218aada0fc0c52c417
BLAKE2b-256 c454b30cdbc8c41c1ade99f36fbf5601666d2925a29ce05ca26c0008970f9369

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page