Skip to main content

data wrangling for lists of tuples and dictionaries

Project description

https://img.shields.io/pypi/v/pytups.svg https://img.shields.io/pypi/l/pytups.svg https://img.shields.io/pypi/pyversions/pytups.svg https://travis-ci.org/pchtsp/pytups.svg?branch=master

What and why

The idea is to allow sparse operations to be executed in matrix data.

I grew used to the chained operations in R’s tidyverse packages or, although not a great fan myself, python’s pandas . I find myself using dictionary and list comprehensions all the time to pass from one data format to the other efficiently. But after doing it for the Nth time, I thought of automaticing it.

In my case, it helps me construct optimisation models with PuLP. I see other possible uses not related to OR.

I’ve implemented some additional methods to regular dictionaries, lists and sets to come up with interesting methods that somewhat quickly pass from one to the other and help with data wrangling.

In order for the operations to make any sense, the assumption that is done is that whatever you are using has the same ‘structure’. For example, if you a have a list of tuples: every element of the list is a tuple with the same size and the Nth element of the tuple has the same type, e.g. [(1, 'red', 'b', '2018-01'), (10, 'ccc', 'ttt', 'ff')]. Note that both tuples have four elements and the first one is a number, not a string. We do not check that this is consistent.

They’re made to always return a new object, so no “in-place” editing, hopefully.

Right now there are three classes to use: dictionaries, tuple lists and ordered sets.

Python versions

Python 3.6 and up.

Quick example

We index a tuple list according to some index positions.:

import pytups as pt
some_list_of_tuples = [('a', 'b', 'c', 1), ('a', 'b', 'c', 2), ('a', 'b', 'c', 45)]
tp_list = pt.TupList(some_list_of_tuples)
tp_list.to_dict(result_col=3)
# {('a', 'b', 'c'): [1, 2, 45]}
tp_list.to_dict(result_col=3).to_dictdict()
# {'a': {'b': {'c': [1, 2, 45]}}}
tp_list.to_dict(result_col=[2, 3])
# {('a', 'b'): [('c', 1), ('c', 2), ('c', 45)]}

We do some operations on dictionaries with common keys.:

import pytups as pt
some_dict = pt.SuperDict(a=1, b=2, c=3, d=5)
some_other_dict = pt.SuperDict(a=5, b=7, c=1)
some_other_dict + some_dict
# {'a': 6, 'b': 9, 'c': 4}
some_other_dict.vapply(lambda v: v**2)
# {'a': 25, 'b': 49, 'c': 1}
some_other_dict.kvapply(lambda k, v: v/some_dict[k])
# {'a': 5.0, 'b': 3.5, 'c': 0.3333333333333333}

Installing

pip install pytups

or, for the development version:

pip install https://github.com/pchtsp/pytups/archive/master.zip

Testing

Run the command:

python -m unittest discover -s tests

if the output says OK, all tests were passed.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytups-0.87.3.tar.gz (18.8 kB view details)

Uploaded Source

Built Distribution

pytups-0.87.3-py3-none-any.whl (14.3 kB view details)

Uploaded Python 3

File details

Details for the file pytups-0.87.3.tar.gz.

File metadata

  • Download URL: pytups-0.87.3.tar.gz
  • Upload date:
  • Size: 18.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pytups-0.87.3.tar.gz
Algorithm Hash digest
SHA256 d69abb0ed322d1010bf9ea30754f56e5574568a7e2a2c84f677b51ca7ba74ed0
MD5 18b4f19e991201bb254f9f638e0dd9e4
BLAKE2b-256 1ba6576248cbd3074e2cb7aad44c4c7778b70c8d9d674475e1cd49d7a8c06277

See more details on using hashes here.

File details

Details for the file pytups-0.87.3-py3-none-any.whl.

File metadata

  • Download URL: pytups-0.87.3-py3-none-any.whl
  • Upload date:
  • Size: 14.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pytups-0.87.3-py3-none-any.whl
Algorithm Hash digest
SHA256 c4d11997f74b111af211ed7c4550ee8af1cd2e96f4becb1bb67373082e1dcd75
MD5 0a9d0890282ea2aba242acb7824166fd
BLAKE2b-256 9b2ec8cb909238cf1940c08b97be5012935a0198550d2a934696c0fe502ef384

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page