Skip to main content

World timezone definitions, modern and historical

Project description

Author:

Stuart Bishop <stuart@stuartbishop.net>

Introduction

pytz brings the Olson tz database into Python. This library allows accurate and cross platform timezone calculations using Python 2.4 or higher. It also solves the issue of ambiguous times at the end of daylight savings, which you can read more about in the Python Library Reference (datetime.tzinfo).

Amost all of the Olson timezones are supported.

Note that this library differs from the documented Python API for tzinfo implementations; if you want to create local wallclock times you need to use the localize() method documented in this document. In addition, if you perform date arithmetic on local times that cross DST boundaries, the results may be in an incorrect timezone (ie. subtract 1 minute from 2002-10-27 1:00 EST and you get 2002-10-27 0:59 EST instead of the correct 2002-10-27 1:59 EDT). A normalize() method is provided to correct this. Unfortunatly these issues cannot be resolved without modifying the Python datetime implementation.

Installation

This package can either be installed from a .egg file using setuptools, or from the tarball using the standard Python distutils.

If you are installing from a tarball, run the following command as an administrative user:

python setup.py install

If you are installing using setuptools, you don’t even need to download anything as the latest version will be downloaded for you from the Python package index:

easy_install --upgrade pytz

If you already have the .egg file, you can use that too:

easy_install pytz-2008g-py2.6.egg

Example & Usage

Localized times and date arithmetic

>>> from datetime import datetime, timedelta
>>> from pytz import timezone
>>> import pytz
>>> utc = pytz.utc
>>> utc.zone
'UTC'
>>> eastern = timezone('US/Eastern')
>>> eastern.zone
'US/Eastern'
>>> amsterdam = timezone('Europe/Amsterdam')
>>> fmt = '%Y-%m-%d %H:%M:%S %Z%z'

This library only supports two ways of building a localized time. The first is to use the localize() method provided by the pytz library. This is used to localize a naive datetime (datetime with no timezone information):

>>> loc_dt = eastern.localize(datetime(2002, 10, 27, 6, 0, 0))
>>> print(loc_dt.strftime(fmt))
2002-10-27 06:00:00 EST-0500

The second way of building a localized time is by converting an existing localized time using the standard astimezone() method:

>>> ams_dt = loc_dt.astimezone(amsterdam)
>>> ams_dt.strftime(fmt)
'2002-10-27 12:00:00 CET+0100'

Unfortunately using the tzinfo argument of the standard datetime constructors ‘’does not work’’ with pytz for many timezones.

>>> datetime(2002, 10, 27, 12, 0, 0, tzinfo=amsterdam).strftime(fmt)
'2002-10-27 12:00:00 AMT+0020'

It is safe for timezones without daylight savings trasitions though, such as UTC:

>>> datetime(2002, 10, 27, 12, 0, 0, tzinfo=pytz.utc).strftime(fmt)
'2002-10-27 12:00:00 UTC+0000'

The preferred way of dealing with times is to always work in UTC, converting to localtime only when generating output to be read by humans.

>>> utc_dt = datetime(2002, 10, 27, 6, 0, 0, tzinfo=utc)
>>> loc_dt = utc_dt.astimezone(eastern)
>>> loc_dt.strftime(fmt)
'2002-10-27 01:00:00 EST-0500'

This library also allows you to do date arithmetic using local times, although it is more complicated than working in UTC as you need to use the normalize() method to handle daylight savings time and other timezone transitions. In this example, loc_dt is set to the instant when daylight savings time ends in the US/Eastern timezone.

>>> before = loc_dt - timedelta(minutes=10)
>>> before.strftime(fmt)
'2002-10-27 00:50:00 EST-0500'
>>> eastern.normalize(before).strftime(fmt)
'2002-10-27 01:50:00 EDT-0400'
>>> after = eastern.normalize(before + timedelta(minutes=20))
>>> after.strftime(fmt)
'2002-10-27 01:10:00 EST-0500'

Creating localtimes is also tricky, and the reason why working with local times is not recommended. Unfortunately, you cannot just pass a tzinfo argument when constructing a datetime (see the next section for more details)

>>> dt = datetime(2002, 10, 27, 1, 30, 0)
>>> dt1 = eastern.localize(dt, is_dst=True)
>>> dt1.strftime(fmt)
'2002-10-27 01:30:00 EDT-0400'
>>> dt2 = eastern.localize(dt, is_dst=False)
>>> dt2.strftime(fmt)
'2002-10-27 01:30:00 EST-0500'

Converting between timezones also needs special attention. This also needs to use the normalize() method to ensure the conversion is correct.

>>> utc_dt = utc.localize(datetime.utcfromtimestamp(1143408899))
>>> utc_dt.strftime(fmt)
'2006-03-26 21:34:59 UTC+0000'
>>> au_tz = timezone('Australia/Sydney')
>>> au_dt = au_tz.normalize(utc_dt.astimezone(au_tz))
>>> au_dt.strftime(fmt)
'2006-03-27 08:34:59 EST+1100'
>>> utc_dt2 = utc.normalize(au_dt.astimezone(utc))
>>> utc_dt2.strftime(fmt)
'2006-03-26 21:34:59 UTC+0000'

You can take shortcuts when dealing with the UTC side of timezone conversions. normalize() and localize() are not really necessary when there are no daylight savings time transitions to deal with.

>>> utc_dt = datetime.utcfromtimestamp(1143408899).replace(tzinfo=utc)
>>> utc_dt.strftime(fmt)
'2006-03-26 21:34:59 UTC+0000'
>>> au_tz = timezone('Australia/Sydney')
>>> au_dt = au_tz.normalize(utc_dt.astimezone(au_tz))
>>> au_dt.strftime(fmt)
'2006-03-27 08:34:59 EST+1100'
>>> utc_dt2 = au_dt.astimezone(utc)
>>> utc_dt2.strftime(fmt)
'2006-03-26 21:34:59 UTC+0000'

tzinfo API

The tzinfo instances returned by the timezone() function have been extended to cope with ambiguous times by adding an is_dst parameter to the utcoffset(), dst() && tzname() methods.

>>> tz = timezone('America/St_Johns')
>>> normal = datetime(2009, 9, 1)
>>> ambiguous = datetime(2009, 10, 31, 23, 30)

The is_dst parameter is ignored for most timestamps. It is only used during DST transition ambiguous periods to resulve that ambiguity.

>>> tz.utcoffset(normal, is_dst=True)
datetime.timedelta(-1, 77400)
>>> tz.dst(normal, is_dst=True)
datetime.timedelta(0, 3600)
>>> tz.tzname(normal, is_dst=True)
'NDT'
>>> tz.utcoffset(ambiguous, is_dst=True)
datetime.timedelta(-1, 77400)
>>> tz.dst(ambiguous, is_dst=True)
datetime.timedelta(0, 3600)
>>> tz.tzname(ambiguous, is_dst=True)
'NDT'
>>> tz.utcoffset(normal, is_dst=False)
datetime.timedelta(-1, 77400)
>>> tz.dst(normal, is_dst=False)
datetime.timedelta(0, 3600)
>>> tz.tzname(normal, is_dst=False)
'NDT'
>>> tz.utcoffset(ambiguous, is_dst=False)
datetime.timedelta(-1, 73800)
>>> tz.dst(ambiguous, is_dst=False)
datetime.timedelta(0)
>>> tz.tzname(ambiguous, is_dst=False)
'NST'

If is_dst is not specified, ambiguous timestamps will raise an pytz.exceptions.AmbiguousTimeError exception.

>>> tz.utcoffset(normal)
datetime.timedelta(-1, 77400)
>>> tz.dst(normal)
datetime.timedelta(0, 3600)
>>> tz.tzname(normal)
'NDT'
>>> import pytz.exceptions
>>> try:
...     tz.utcoffset(ambiguous)
... except pytz.exceptions.AmbiguousTimeError:
...     print('pytz.exceptions.AmbiguousTimeError: %s' % ambiguous)
pytz.exceptions.AmbiguousTimeError: 2009-10-31 23:30:00
>>> try:
...     tz.dst(ambiguous)
... except pytz.exceptions.AmbiguousTimeError:
...     print('pytz.exceptions.AmbiguousTimeError: %s' % ambiguous)
pytz.exceptions.AmbiguousTimeError: 2009-10-31 23:30:00
>>> try:
...     tz.tzname(ambiguous)
... except pytz.exceptions.AmbiguousTimeError:
...     print('pytz.exceptions.AmbiguousTimeError: %s' % ambiguous)
pytz.exceptions.AmbiguousTimeError: 2009-10-31 23:30:00

Problems with Localtime

The major problem we have to deal with is that certain datetimes may occur twice in a year. For example, in the US/Eastern timezone on the last Sunday morning in October, the following sequence happens:

  • 01:00 EDT occurs

  • 1 hour later, instead of 2:00am the clock is turned back 1 hour and 01:00 happens again (this time 01:00 EST)

In fact, every instant between 01:00 and 02:00 occurs twice. This means that if you try and create a time in the ‘US/Eastern’ timezone using the standard datetime syntax, there is no way to specify if you meant before of after the end-of-daylight-savings-time transition.

>>> loc_dt = datetime(2002, 10, 27, 1, 30, 00, tzinfo=eastern)
>>> loc_dt.strftime(fmt)
'2002-10-27 01:30:00 EST-0500'

As you can see, the system has chosen one for you and there is a 50% chance of it being out by one hour. For some applications, this does not matter. However, if you are trying to schedule meetings with people in different timezones or analyze log files it is not acceptable.

The best and simplest solution is to stick with using UTC. The pytz package encourages using UTC for internal timezone representation by including a special UTC implementation based on the standard Python reference implementation in the Python documentation.

The UTC timezone unpickles to be the same instance, and pickles to a smaller size than other pytz tzinfo instances. The UTC implementation can be obtained as pytz.utc, pytz.UTC, or pytz.timezone(‘UTC’).

>>> import pickle, pytz
>>> dt = datetime(2005, 3, 1, 14, 13, 21, tzinfo=utc)
>>> naive = dt.replace(tzinfo=None)
>>> p = pickle.dumps(dt, 1)
>>> naive_p = pickle.dumps(naive, 1)
>>> len(p) - len(naive_p)
17
>>> new = pickle.loads(p)
>>> new == dt
True
>>> new is dt
False
>>> new.tzinfo is dt.tzinfo
True
>>> pytz.utc is pytz.UTC is pytz.timezone('UTC')
True

Note that this instance is not the same instance (or implementation) as other timezones with the same meaning (GMT, Greenwich, Universal, etc.).

>>> utc is pytz.timezone('GMT')
False

If you insist on working with local times, this library provides a facility for constructing them unambiguously:

>>> loc_dt = datetime(2002, 10, 27, 1, 30, 00)
>>> est_dt = eastern.localize(loc_dt, is_dst=True)
>>> edt_dt = eastern.localize(loc_dt, is_dst=False)
>>> print(est_dt.strftime(fmt) + ' / ' + edt_dt.strftime(fmt))
2002-10-27 01:30:00 EDT-0400 / 2002-10-27 01:30:00 EST-0500

If you pass None as the is_dst flag to localize(), pytz will refuse to guess and raise exceptions if you try to build ambiguous or non-existent times.

For example, 1:30am on 27th Oct 2002 happened twice in the US/Eastern timezone when the clocks where put back at the end of Daylight Savings Time:

>>> dt = datetime(2002, 10, 27, 1, 30, 00)
>>> try:
...     eastern.localize(dt, is_dst=None)
... except pytz.exceptions.AmbiguousTimeError:
...     print('pytz.exceptions.AmbiguousTimeError: %s' % dt)
pytz.exceptions.AmbiguousTimeError: 2002-10-27 01:30:00

Similarly, 2:30am on 7th April 2002 never happened at all in the US/Eastern timezone, as the clocks where put forward at 2:00am skipping the entire hour:

>>> dt = datetime(2002, 4, 7, 2, 30, 00)
>>> try:
...     eastern.localize(dt, is_dst=None)
... except pytz.exceptions.NonExistentTimeError:
...     print('pytz.exceptions.NonExistentTimeError: %s' % dt)
pytz.exceptions.NonExistentTimeError: 2002-04-07 02:30:00

Both of these exceptions share a common base class to make error handling easier:

>>> isinstance(pytz.AmbiguousTimeError(), pytz.InvalidTimeError)
True
>>> isinstance(pytz.NonExistentTimeError(), pytz.InvalidTimeError)
True

Although localize() handles many cases, it is still not possible to handle all. In cases where countries change their timezone definitions, cases like the end-of-daylight-savings-time occur with no way of resolving the ambiguity. For example, in 1915 Warsaw switched from Warsaw time to Central European time. So at the stroke of midnight on August 5th 1915 the clocks were wound back 24 minutes creating an ambiguous time period that cannot be specified without referring to the timezone abbreviation or the actual UTC offset. In this case midnight happened twice, neither time during a daylight savings time period:

>>> warsaw = pytz.timezone('Europe/Warsaw')
>>> loc_dt1 = warsaw.localize(datetime(1915, 8, 4, 23, 59, 59), is_dst=False)
>>> loc_dt1.strftime(fmt)
'1915-08-04 23:59:59 WMT+0124'
>>> loc_dt2 = warsaw.localize(datetime(1915, 8, 5, 00, 00, 00), is_dst=False)
>>> loc_dt2.strftime(fmt)
'1915-08-05 00:00:00 CET+0100'
>>> str(loc_dt2 - loc_dt1)
'0:24:01'

The only way of creating a time during the missing 24 minutes is converting from another timezone - because neither of the timezones involved where in daylight savings mode the API simply provides no way to express it:

>>> utc_dt = datetime(1915, 8, 4, 22, 36, tzinfo=pytz.utc)
>>> utc_dt.astimezone(warsaw).strftime(fmt)
'1915-08-04 23:36:00 CET+0100'

The standard Python way of handling all these ambiguities is not to handle them, such as demonstrated in this example using the US/Eastern timezone definition from the Python documentation (Note that this implementation only works for dates between 1987 and 2006 - it is included for tests only!):

>>> from pytz.reference import Eastern # pytz.reference only for tests
>>> dt = datetime(2002, 10, 27, 0, 30, tzinfo=Eastern)
>>> str(dt)
'2002-10-27 00:30:00-04:00'
>>> str(dt + timedelta(hours=1))
'2002-10-27 01:30:00-05:00'
>>> str(dt + timedelta(hours=2))
'2002-10-27 02:30:00-05:00'
>>> str(dt + timedelta(hours=3))
'2002-10-27 03:30:00-05:00'

Notice the first two results? At first glance you might think they are correct, but taking the UTC offset into account you find that they are actually two hours appart instead of the 1 hour we asked for.

>>> from pytz.reference import UTC # pytz.reference only for tests
>>> str(dt.astimezone(UTC))
'2002-10-27 04:30:00+00:00'
>>> str((dt + timedelta(hours=1)).astimezone(UTC))
'2002-10-27 06:30:00+00:00'

Country Information

A mechanism is provided to access the timezones commonly in use for a particular country, looked up using the ISO 3166 country code. It returns a list of strings that can be used to retrieve the relevant tzinfo instance using pytz.timezone():

>>> print(' '.join(pytz.country_timezones['nz']))
Pacific/Auckland Pacific/Chatham

The Olson database comes with a ISO 3166 country code to English country name mapping that pytz exposes as a dictionary:

>>> print(pytz.country_names['nz'])
New Zealand

What is UTC

‘UTC’ is Universal Time, also known as Greenwich Mean Time or GMT in the United Kingdom. All other timezones are given as offsets from UTC. No daylight savings time occurs in UTC, making it a useful timezone to perform date arithmetic without worrying about the confusion and ambiguities caused by daylight savings time transitions, your country changing its timezone, or mobile computers that move roam through multiple timezones.

Helpers

There are two lists of timezones provided.

all_timezones is the exhaustive list of the timezone names that can be used.

>>> from pytz import all_timezones
>>> len(all_timezones) >= 500
True
>>> 'Etc/Greenwich' in all_timezones
True

common_timezones is a list of useful, current timezones. It doesn’t contain deprecated zones or historical zones, except for a few I’ve deemed in common usage, such as US/Eastern (open a bug report if you think other timezones are deserving of being included here). It is also a sequence of strings.

>>> from pytz import common_timezones
>>> len(common_timezones) < len(all_timezones)
True
>>> 'Etc/Greenwich' in common_timezones
False
>>> 'Australia/Melbourne' in common_timezones
True
>>> 'US/Eastern' in common_timezones
True
>>> 'Canada/Eastern' in common_timezones
True
>>> 'US/Pacific-New' in all_timezones
True
>>> 'US/Pacific-New' in common_timezones
False

Both common_timezones and all_timezones are alphabetically sorted:

>>> common_timezones_dupe = common_timezones[:]
>>> common_timezones_dupe.sort()
>>> common_timezones == common_timezones_dupe
True
>>> all_timezones_dupe = all_timezones[:]
>>> all_timezones_dupe.sort()
>>> all_timezones == all_timezones_dupe
True

all_timezones and common_timezones are also available as sets.

>>> from pytz import all_timezones_set, common_timezones_set
>>> 'US/Eastern' in all_timezones_set
True
>>> 'US/Eastern' in common_timezones_set
True
>>> 'Australia/Victoria' in common_timezones_set
False

You can also retrieve lists of timezones used by particular countries using the country_timezones() function. It requires an ISO-3166 two letter country code.

>>> from pytz import country_timezones
>>> print(' '.join(country_timezones('ch')))
Europe/Zurich
>>> print(' '.join(country_timezones('CH')))
Europe/Zurich

License

MIT license.

This code is also available as part of Zope 3 under the Zope Public License, Version 2.1 (ZPL).

I’m happy to relicense this code if necessary for inclusion in other open source projects.

Latest Versions

This package will be updated after releases of the Olson timezone database. The latest version can be downloaded from the Python Package Index. The code that is used to generate this distribution is hosted on launchpad.net and available using the Bazaar version control system using:

bzr branch lp:pytz

Bugs, Feature Requests & Patches

Bugs can be reported using Launchpad.

Issues & Limitations

  • Offsets from UTC are rounded to the nearest whole minute, so timezones such as Europe/Amsterdam pre 1937 will be up to 30 seconds out. This is a limitation of the Python datetime library.

  • If you think a timezone definition is incorrect, I probably can’t fix it. pytz is a direct translation of the Olson timezone database, and changes to the timezone definitions need to be made to this source. If you find errors they should be reported to the time zone mailing list, linked from http://www.twinsun.com/tz/tz-link.htm

Further Reading

More info than you want to know about timezones: http://www.twinsun.com/tz/tz-link.htm

Contact

Stuart Bishop <stuart@stuartbishop.net>

Project details


Release history Release notifications | RSS feed

This version

2011n

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

pytz-2011n.zip (519.7 kB view details)

Uploaded Source

pytz-2011n.tar.gz (248.8 kB view details)

Uploaded Source

pytz-2011n.tar.bz2 (166.9 kB view details)

Uploaded Source

Built Distributions

pytz-2011n-py3.2.egg (506.1 kB view details)

Uploaded Source

pytz-2011n-py3.1.egg (506.1 kB view details)

Uploaded Source

pytz-2011n-py2.7.egg (505.9 kB view details)

Uploaded Source

pytz-2011n-py2.6.egg (506.1 kB view details)

Uploaded Source

pytz-2011n-py2.5.egg (506.1 kB view details)

Uploaded Source

pytz-2011n-py2.4.egg (506.5 kB view details)

Uploaded Source

File details

Details for the file pytz-2011n.zip.

File metadata

  • Download URL: pytz-2011n.zip
  • Upload date:
  • Size: 519.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pytz-2011n.zip
Algorithm Hash digest
SHA256 87ca007e1a0d83b2ce454dd23e195e47d647fffd42c98d372731b4de29a5e614
MD5 dcdfb25debf822da4f093800cf859949
BLAKE2b-256 f95be38aa2e972a20cec267305b66b75abd3d50c711b1245f0176fe8f5e06c8c

See more details on using hashes here.

File details

Details for the file pytz-2011n.tar.gz.

File metadata

  • Download URL: pytz-2011n.tar.gz
  • Upload date:
  • Size: 248.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pytz-2011n.tar.gz
Algorithm Hash digest
SHA256 051e12587179e8ff4f6c79a1a49a3a29b22186ba48897868f070cd4af26768ac
MD5 75ffdc113a4bcca8096ab953df746391
BLAKE2b-256 c6bd8f8fab6717dbb3ab588f98cb256f99ed02411a0402f1466011c02a19cc77

See more details on using hashes here.

File details

Details for the file pytz-2011n.tar.bz2.

File metadata

  • Download URL: pytz-2011n.tar.bz2
  • Upload date:
  • Size: 166.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pytz-2011n.tar.bz2
Algorithm Hash digest
SHA256 6d01a6742ee70ae192795cb4b3ca12390601daa7b46378bd8bde796fa39dd6cb
MD5 6322c068f0497c82216ed36f6873e9d0
BLAKE2b-256 377f35a9254080735c0f57fb616b7ca1f33d69874262ea950582cbd552db0547

See more details on using hashes here.

File details

Details for the file pytz-2011n-py3.2.egg.

File metadata

  • Download URL: pytz-2011n-py3.2.egg
  • Upload date:
  • Size: 506.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pytz-2011n-py3.2.egg
Algorithm Hash digest
SHA256 d40e38948bd786d878ab8659261e01c2f9664dde7e15a94f1bd5c4a717fb375b
MD5 9d4095397f8f7dafa2063b3b73b66fde
BLAKE2b-256 f2733ca4dc4aac0b5cf63ff74a54920eeeb8e7b74d47ffd5e1f7f435a0ab7879

See more details on using hashes here.

File details

Details for the file pytz-2011n-py3.1.egg.

File metadata

  • Download URL: pytz-2011n-py3.1.egg
  • Upload date:
  • Size: 506.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pytz-2011n-py3.1.egg
Algorithm Hash digest
SHA256 001bb5f9bce39b62e553d48edc5546457cdc9543381e60ef7fe5f1c1093ea7a0
MD5 2e9ec3b2e759391551fc341541712cd2
BLAKE2b-256 8033d635a84e0a2ddb321417f82491ec04ebb18bd20e6de416173392286f75be

See more details on using hashes here.

File details

Details for the file pytz-2011n-py2.7.egg.

File metadata

  • Download URL: pytz-2011n-py2.7.egg
  • Upload date:
  • Size: 505.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pytz-2011n-py2.7.egg
Algorithm Hash digest
SHA256 69278551a62a65fda4b267ae0aa6a5c59e96858f993a5e8949578b7e8ba3c4cf
MD5 306530972af02f4ceaffb46956e4c554
BLAKE2b-256 b74eefa7ebcf6bd9c56ed667616e7e6b199306630ccc5585e729093b74a01c1a

See more details on using hashes here.

File details

Details for the file pytz-2011n-py2.6.egg.

File metadata

  • Download URL: pytz-2011n-py2.6.egg
  • Upload date:
  • Size: 506.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pytz-2011n-py2.6.egg
Algorithm Hash digest
SHA256 f39d8319db0d56db30351e91e5367ba6a8f8e149572cfbba8225986d87c7e625
MD5 0aa878793caf7c7c6802a7dbf155b2e0
BLAKE2b-256 e760d1f925c430df61fe7313951383647f963e73e86b04a9febaf73d16d7d9d6

See more details on using hashes here.

File details

Details for the file pytz-2011n-py2.5.egg.

File metadata

  • Download URL: pytz-2011n-py2.5.egg
  • Upload date:
  • Size: 506.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pytz-2011n-py2.5.egg
Algorithm Hash digest
SHA256 ca158704513a88c05ff29b0be0d337fc2909dba427c49f88b5a18007fac12f6e
MD5 65c4c00b36007d1d0e9125b9a57aa148
BLAKE2b-256 10d461fd634bf6ce6373f90cecee791b14c70200928546eb5c5bf02f3fb3b53c

See more details on using hashes here.

File details

Details for the file pytz-2011n-py2.4.egg.

File metadata

  • Download URL: pytz-2011n-py2.4.egg
  • Upload date:
  • Size: 506.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pytz-2011n-py2.4.egg
Algorithm Hash digest
SHA256 9b656a32272576c7f2898fb7d8d0ba2101ba355189ffc10d013bf568cb6d46df
MD5 a9c3b4c0a732cdc7a1c92cb136942e58
BLAKE2b-256 a73db3a15ac542573179b16d5767ad25a7c1f0946a15510d4c2c1b29b42e30a6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page